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Abstract. In this paper, we consider six logic puzzles (i.e., single player games) that are
available as smartphone apps, namely Starbattle, V3ck, Monodot, Knight Moves, Circuit
Scramble and Binary Sudoku. For each puzzle, an integer linear programming formulation
is presented (a MathProg implementation is available as well). The purpose is to provide
interesting examples and exercises for teaching mathematical programming in OR/MS lec-
tures. The puzzles lead to a broad variety of exercises, ranging from graph models to specific
constraint types such as logical and inequality constraints.
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1 Introduction
Logic puzzles are very popular among computer scientists and operations researchers. Consider, for
example, Sudoku which is one of the most liked puzzles. Mathematical programming formulations
for Sudoku and related implementations have been published in several scientific journals and
books, see Chlond (2005), Koch (2006), Weiss and Rasmussen (2007), Rasmussen and Weiss (2007),
Bartlett et al. (2008) and Oki (2012, Section 9.1), and they can be found in various blogs. Further
puzzles for which mathematical models have been proposed include, among others, the n queens
problem (Letavec and Ruggiero, 2002), other chessboard placement puzzles (Chlond and Toase,
2002; Chlond, 2010), Einstein’s riddle (Yeomans, 2003), logic grid puzzles (Chlond, 2014), as
well as the popular smartphone puzzle apps flow free (also called number link) and infinity loop
(Hartmann, 2018).

One particular motivation for studying logic puzzles in OR/MS is that they can be used when
teaching mathematical modeling. It might be interesting for students to develop integer programs
to solve puzzles. In recent years, a large number of logic puzzles appeared as smartphone apps,
and considering the numbers of downloads reported in the app stores, many of the logic puzzle
apps are immensely popular (Hartmann, 2018). It may be particularly motivating for students
to develop mathematical models for logic puzzle apps they can easily download and play on their
devices.

In this paper, we present six logic puzzles which are available as smartphone apps, and we
develop mathematical programming formulations to solve them. As in (Hartmann, 2018), we use
the following criteria for selecting the puzzles. Our first goal is to obtain models with different
levels of difficulty, with a particular focus on models that are not too difficult (because we want
to use them in introductory lectures). The second goal is to include models with a broad range
of constraint types. Our third goal is to motivate students to work with the apps. Thus we select
puzzles with rules that are simple and easy to learn, and we choose apps that are available for free
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(a) Puzzle (b) Solution

Figure 1: Smartphone app Starbattle

(all apps discussed here are available for Android for free, and some of them are available for iOS
as well).

The remainder is organized as follows: In each of the next six sections, a puzzle is introduced,
and a mathematical model is developed to solve it. Section 2 presents the app Starbattle which leads
to a rather easy exercise. Then Sections 3 and 4 discuss the apps V3ck and Monodot which allow
for exercises related to graphs. The next three sections discuss puzzles that are related to specific
constraint types. Section 5 deals with puzzles based on the moves of knights on chessboards; this
can be used when teaching models for the traveling salesman problem and the related subtour
elimination constraints. The app Circuit Scramble presented in Section 6 allows to study the
formulation of logical constraints (AND, OR, XOR, NOT) in a linear model. In Section 7, a
puzzle often called Binary Sodoku is considered. One of its rules leads to inequality constraints
( 6=) which will be covered by the mathematical model. Finally, Section 8 draws some conclusions.
Implementations of the models in MathProg (Makhorin, 2010) are available as supplementary
material.

2 Starbattle
The app Starbattle is based on a grid of n×n cells. The grid is partitioned into n sets of connected
cells; these sets are called islands (see Figure 1). n stars must be placed in the grid such that each
row, each column, and each island contains exactly one star. Moreover, all eight cells surrounding
a cell with a star must remain empty. In a variant of the puzzle, 2n stars are placed, and each
row, column and island must contain two stars instead of one.

Let S be the number of stars that must be placed in each row, column and island (we have
either S = 1 or S = 2). The set of all cells in the grid is C = {(i, j) | i, j = 1, . . . , n}. Next,
let Ak ⊂ C be the k-th island, k = 1, . . . , n. We assume that Ak ∩ Ak′ = ∅ for all k 6= k′ and
A1 ∪A2 ∪ . . . ∪An = C.

The binary decison variables xij reflect the placement of the stars:

xij =
{

1 if a star is placed in cell (i, j)
0 otherwise

Now we can give the mathematical model for Starbattle:
n∑

j=1
xij = S i = 1, . . . , n (1)
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(a) Puzzle (b) Solution

Figure 2: Smartphone app V3ck

n∑
i=1

xij = S j = 1, . . . , n (2)∑
(i,j)∈Ak

xij = S k = 1, . . . , n (3)

xij + xi+1,j + xi,j+1 + xi+1,j+1 ≤ 1 i, j = 1, . . . , n− 1 (4)
xij ∈ {0, 1} i, j = 1, . . . , n (5)

Constraints (1) and (2) take care of the required number of stars in the rows and columns,
respectively. Constraints (3) do the same for the islands. Next, Constraints (4) observe the rule
that the cells surrounding a star must be empty. This is achieved by making sure that each 2× 2
square of cells contains at most one star. The binary decison variables are declared by Contraints
(5). Of course, in case of S = 1 Constraints (1), (2) and (5) correspond to those of the assignment
problem (Hillier and Lieberman, 2001).

3 V3ck
In the app V3ck, a graph (i.e., nodes and edges) is displayed on the screen. A number of different
colors is given, and the user has to color each of the edges with one of the colors. Each node is
associated with one or more numbers. Each number is displayed in one of the colors and reflects
how many of the edges linked to this node have that color. Figure 2 shows a screenshot of the
puzzle as well as the related solution. The puzzle is somewhat related to the edge-coloring problem
in graph theory (Holyer, 1981). Nevertheless, the constraints of the edge-coloring problem are
different (there, adjacent edges must be assigned to different colors, which is not the case for
V3ck).

For developing a formal model, let n be the number of nodes, and let C be the number of
colors. The graph is given by G = (V, E) where V = {1, . . . , n} is the set of nodes and E is the
set of edges. Parameter aik determines how many of the edges associated with node i must receive
color k.

As can be seen from Figure 2, the puzzle is based on an undirected graph. For modeling
purposes, however, it is more convenient to have a directed graph, that is, each edge between
nodes i and j is modeled by two directed edges or arcs (i, j) and (j, i). Now the binary decision
variables that reflect the assignment of colors to the edges can be defined as follows:

xijk =
{

1 if arc (i, j) ∈ E obtains color k

0 otherwise
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As before, there is no objective, and we can give the constraints of the mathematical model:

C∑
k=1

xijk = 1 (i, j) ∈ E (6)

xijk = xjik (i, j) ∈ E, k = 1, . . . , C (7)∑
(i,j)∈E

xijk = aik i = 1, . . . , n, k = 1, . . . , C (8)

xijk ∈ {0, 1} (i, j) ∈ E, k = 1, . . . , C (9)

Constraints (6) make sure that every arc is assigned exactly one color. Next, Constraints (7)
observe that arcs (i, j) and (j, i) must receive the same color (this is only necessary because the
model is based on a directed graph). For each node, Constraints (8) check that the number of
adjacent edges of each color is correct. Last, the binary decision variables are taken care of by
Constraints (9).

4 Monodot
In the app Monodot, the player’s task is to construct a graph from a set of given nodes such that the
specified number of neighbors of each node (i.e., the degree of each node) is met. In the beginning,
a grid with n × n cells is displayed along with a list of nodes. The player has to drag each node
to a cell of the grid. When a node is dropped, the app automatically adds an edge to each node
already located in a horizontal, vertical and diagonal neighbor cell. Each node contains a number,
and when finished, this number must be equal to the degree of the node. Thus, the player has
to find a location for each node such that the required number of edges to neighbors is met, see
Figure 3.

In addition to the size of the grid n, we need some more notation. The number of nodes
requiring t neighbors is denoted as at (since a node cannot have more than 8 neighbors in the
grid, we have t = 1, . . . , 8). In the example of Figure 3, we have a3 = 4 and a4 = 0. Let
C = {(i, j) | i, j = 1, . . . , n} be the set of all cells of the grid. We can now define the neighborhood
of cell (i, j) by

Nij = {(i− 1, j − 1), (i− 1, j), (i− 1, j + 1), (i, j − 1),
(i, j + 1), (i + 1, j − 1), (i + 1, j), (i + 1, j + 1)} ∩ C

In order to reflect the positioning of nodes in the grid, we introduce the following binary decision
variables:

xijt =
{

1 if a node which requires t neighbors is placed in cell (i, j)
0 otherwise

The constraints of the mathematical model are as follows:
8∑

t=1
xijt ≤ 1 i, j = 1, . . . , n (10)

n∑
i=1

n∑
j=1

xijt = at t = 1, . . . , 8 (11)

∑
(k,l)∈Nij

8∑
t=1

xklt ≥
8∑

t=1
txijt i, j = 1, . . . , n (12)

∑
(k,l)∈Nij

8∑
t=1

xklt ≤
8∑

t=1
txijt + M(1−

8∑
t=1

xijt) i, j = 1, . . . , n (13)



More Logic Puzzle Apps Solved by Mathematical Programming 5

1 1 2 2 3

3 3 3 5 5

(a) Puzzle

1 3

5 5 3

3 3 2

2

1

(b) Solution

Figure 3: Puzzle Monodot

xijt ∈ {0, 1} i, j = 1, . . . , n, t = 1, . . . , 8 (14)

Constraints (10) make sure that each cell of the grid is assigned at most one node. The required
number of nodes with t neighbors is taken into account by Constraints (11). Next, Constraints
(12) and (13) take care of the desired number of neighbor nodes in the resulting graph. According
to (12), a node assigned to a cell has at least t neighbors, but no restriction is imposed if no node is
assigned to the cell. Similarly, (13) implies that a node assigned to a cell has at most t neighbors,
and again no restriction is made if no node is assigned to the cell (M is a big number and can
simply be set to 8). The final Constraints (14) define the binary decision variables.

5 Knight Moves
A well-known puzzle is based on the moves of knights on a chessboard. A knight moves two squares
either vertically or horizontally and then one square to the left or to the right. The classical
knight-based puzzle is to start in a given square and then successively visit all other squares of the
chessboard without visiting any square more than once. There are several variants and extensions,
for example rectangular chessboards of different dimensions and irregular chessboards where certain
squares may not be visited. Android apps providing knight-based puzzles include Knight’s Alley,
Knight Hopper, Knight’s Move, and Knight Ride. Several algorithms for constructing a knight’s
tour (that is, a knight’s Hamiltonian path) on chessboards have been proposed in the literature,
see, e.g., Conrad et al. (1994) and Lin and Wei (2005).

In what follows, we consider a rectangular board with m rows and n columns (of course, the
classical chessboard with m = n = 8 is included as a special case). The knight is placed on a
square (is, js) from which it has to start. All squares must be visited exactly once in a continuous
sequence of knight moves.

Let us define a graph G = (V, E) where each node (i, j) ∈ V corresponds to a square on the
chessboard. For each node (i, j) the set of neighbor nodes is given by

Nij = {(i− 2, j − 1), (i− 2, j + 1), (i− 1, j − 2), (i− 1, j + 2),
(i + 1, j − 2), (i + 1, j + 2), (i + 2, j − 1), (i + 2, j + 1)} ∩ V

Of course, the neighbor nodes of node (i, j) represent those squares that can be reached from
square (i, j) by a knight in a single move. The set E of edges is now defined by introducing an
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edge (i, j, k, l) between any two neighboring nodes (i, j) ∈ V and (k, l) ∈ Nij . This way, the edges
represent the possible knight moves.

We need two types of decision variables. Variables xijkl with (i, j) ∈ V and (k, l) ∈ Nij are
binary and reflect the edges corresponding to the selected moves of the knight:

xijkl =
{

1 if the knight should move from square (i, j) to square (k, l)
0 otherwise

Moreover, we introduce variables zij ≥ 0 for all nodes (i, j) ∈ V . They will be needed for
a constraint which ensures that a single connected sequence of moves is generated. Now the
contraints can be given as follows (again, an objective function is not needed):∑

(k,l)∈Nis,js

xk,l,is,js = 0 (15)

∑
(k,l)∈Nis,js

xis,js,k,l = 1 (16)

∑
(k,l)∈Nij

xklij = 1 (i, j) ∈ V \ {(is, js)} (17)

∑
(k,l)∈Nij

xijkl ≤ 1 (i, j) ∈ V \ {(is, js)} (18)

zkl − zij + M(1− xijkl) ≥ 1 (i, j) ∈ V, (k, l) ∈ Nij (19)
xijkl ∈ {0, 1} (i, j) ∈ V, (k, l) ∈ Nij (20)
zij ≥ 0 (i, j) ∈ V (21)

Constraints (15) and (16) make sure that there is no move to the start square and that there
is one move from the start square, respectively. The next two types of contraints take care of the
flow through the remaining squares. Constraints (17) observe that each such square will be visited.
Moreover, Constraints (18) control that a square can only be left at most once (note that the last
square cannot be left). In addition, we need Constraints (19) which mean that each node (i, j) is
assigned a z value that is larger than that of its predecessor node (thereby, M is a large number
which can be set to m · n). This way, cycles are made impossible, and a single connected sequence
of moves is obtained. Note that these are the subtour elimination constraints suggested by Miller
et al. (1960) for the traveling salesman problem (TSP). Finally, the decision variables are declared
by (20) and (21).

It may be mentioned that extensions of the knight move problem as given above can be incor-
porated into the model as well. In particular, irregular chessboards where certain squares may not
be visited can be modeled by adapting graph G. Denoting the set of nodes reflecting the forbidden
squares as F , we simply define V to contain all nodes except those included in F . The definition
of the set of edges E given above needs not be modified. The model (15)–(21) automatically takes
forbidden squares into account if V is adapted accordingly.

6 Circuit Scramble
The app Circuit Scramble displays a circuit which consists of logic gates, see the screenshots in
Figure 4. There are AND, OR and XOR gates, each with two inputs, and NOT gates with one
input (the latter are called inverters in the app and are depicted as circles). Moreover, the circuit
contains several inputs as well as one output node. The player has to decide which inputs have
to be switched on (set to TRUE) or off (FALSE) such that the output node is TRUE and shows
“level complete.” The goal is to achieve this by changing the states of the smallest possible number
of inputs.
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(a) Puzzle (b) Solution

Figure 4: Smartphone app Circuit Scramble

We consider a graph with n nodes labeled i = 1, . . . , n. Each input of the circuit as well as
each output of a gate is reflected by a node. The set of nodes is now partitioned into subsets. I1

is the set of the input nodes which are TRUE in the initial state, and I0 is the set of the input
nodes which are FALSE in the initial state. The remaining sets reflect the outputs of the different
gate types. A contains the AND gates, O contains the OR gates, X contains the XOR gates, and
N contains the NOT gates. Next, the circuit structure is considered. Let pi and qi be the two
predecessor nodes (or inputs) of each AND, OR, and XOR gates, i ∈ A∪O ∪X, and let pi be the
single predecessor (or input) of each NOT gate, i ∈ N . We assume that node n is the output node
of the circuit which must be switched on.

Considering the screenshot of Figure 4, we assume that we label the nodes from bottom left to
top right. Thus, the six inputs would be indexed by i = 1, . . . , 6, and the AND gate at the bottom
on the left would be i = 7. Then we have 7 ∈ A, and the predecessors of this gate are p7 = 1 and
q7 = 2.

We introduce straightforward binary decision variables to reflect the logical state of each node
i = 1, . . . , n:

xi =
{

1 if node i should be TRUE
0 otherwise

Now we are ready to define the model which, unlike the previous models, contains an objective
function:

Minimize
∑
i∈I1

(1− xi) +
∑
i∈I0

xi (22)

subject to
xi ≤ xpi

xi ≤ xqi
xi ≥ xpi

+ xqi
− 1 i ∈ A (23)

xi ≥ xpi xi ≥ xqi xi ≤ xpi + xqi i ∈ O (24)
xi ≤ xpi

+ xqi
xi ≥ xpi

− xqi
xi ≥ xqi

− xpi
xi ≤ 2− xpi

− xqi
i ∈ X (25)

xi = 1− xpi
i ∈ N (26)

xn = 1 (27)
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Figure 5: Binary Sudoku

xi ∈ {0, 1} i = 1, . . . , n (28)

Objective (22) minimizes the deviation from the initial state of the inputs and thus the number
of moves. Constraints (23), (24), (25) and (26) take care of the AND, OR, XOR, and NOR gates,
respectively. Next, Constraint (27) makes sure that the output of the circuit is TRUE, that is, the
sign “level complete” is illuminated. The binary decision variables are defined by (28).

7 Binary Sudoku
A puzzle often referred to as Binary Sudoku includes a grid of n× n cells, some of which contain
a 0 or a 1 (n is an even number). The task is to fill the grid by entering either a 0 or a 1 into
each empty cell. The following rules have to be observed: First, each row and each column must
contain exactly the same number of 0s and 1s. Second, no more than two consecutive cells (either
horizontally or vertically) may contain the same number. Third, no two rows may be exactly the
same, and no two columns may be identical. Figure 5 shows an example puzzle along with the
solution.

There are many apps for this puzzle. Apps for Android include Mr. Binairo, Binaris 1001,
LogiBrain Binary, Zuzu Binary Sudoku Puzzle, Binoxxo and several others. Some apps use other
symbols than 0 and 1 or two different colors, but the logic remains the same.

In addition to the size of the grid n, we need some notation to specify the initial state of the
grid. Let A be the set of cells (i, j) that contain a 0 at the beginning, and let B be the set of cells
that contain a 1.

We introduce binary decision variables xij that determine whether a 0 or a 1 should be entered
into cell (i, j). Moreover, we need binary variables yik for constraints that ensure that rows
i = 1, . . . , n and k = i + 1, . . . , n are different. Likewise, binary variables zik are required for
constraints that verify that columns j = 1, . . . , n and k = j + 1, . . . , n are different. Now the
constraints can be formulated as follows:

xij = 0 (i, j) ∈ A (29)
xij = 1 (i, j) ∈ B (30)

n∑
j=1

xij = n

2 i = 1, . . . , n (31)

n∑
i=1

xij = n

2 j = 1, . . . , n (32)
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1 ≤
j+2∑
k=j

xik ≤ 2 i = 1, . . . , n, j = 1, . . . , n− 2 (33)

1 ≤
i+2∑
k=i

xkj ≤ 2 i = 1, . . . , n− 2, j = 1, . . . , n (34)

n∑
j=1

2j−1xij −
n∑

j=1
2j−1xkj ≤Myik − 1 i = 1, . . . , n, k = i + 1, . . . , n (35)

n∑
j=1

2j−1xij −
n∑

j=1
2j−1xkj ≥ 1−M(1− yik) i = 1, . . . , n, k = i + 1, . . . , n (36)

n∑
i=1

2i−1xij −
n∑

i=1
2i−1xik ≤Mzjk − 1 j = 1, . . . , n, k = j + 1, . . . , n (37)

n∑
i=1

2i−1xij −
n∑

i=1
2i−1xik ≥ 1−M(1− zjk) j = 1, . . . , n, k = j + 1, . . . , n (38)

Constraints (29) and (30) take the zeros and ones of the initial state of the grid into account.
Next, Constraints (31) and (32) make sure that there are as many zeros as ones in each row and
each column. The rule that no more than two adjacent cells may contain the same number is
taken care of by Constraints (33) for rows and by (34) for columns, respectively. They control
that the sum of any three neighboring cells must be at least 1 (which avoids three zeros) and at
most 2 (which avoids three ones). The requirement that all rows must be different is considered by
Constraints (35) and (36), while Constraints (37) and (38) do the same for columns. The binary
vectors of the rows and columns are transformed into integers, and the constraints then make sure
that these integers are not equal. With the help of additional variables yik and zik we obtain
constraints reflecting inequality (6=). Thereby, M is a big number and can be set to M = 2n+1. It
should be noted that these constraints to achieve inequality only work for integer values.

8 Conclusions
We have presented six logic puzzles which are available as smartphone apps, along with mathe-
matical models to solve them. As in Hartmann (2018), the puzzle apps and models are used in the
lecture Operations Research in two BSc programs, namely business administration and business
informatics. The lecture is given in the fourth semester, after the students have completed basic
lectures on mathematics.

The main purpose when using puzzles is to provide interesting examples for in-class discussions
of modeling approaches as well as further exercises that students can do at home. In order to
encourage students who are less familiar with mathematical formalisms, we often start with the
development of models for given instances (rather than general models). As instances, we simply
use the screenshots given in this paper. Working with instances is perceived as being much easier
than working with general models by most students.

Moreover, it should be mentioned that discussing logic puzzles can help to demonstrate the
broad applicability of integer linear programming and the power of the algorithms included in
solvers. In our lectures, we emphasize that variables, linear constraints and objective can in fact
be seen as a specific “language,” and that once a problem has been translated to that language,
standard algorithms can be used to solve it. We point out that while mathematical programming
is fairly restricted because it only allows for linear expressions, it is also very general because it
can solve many different types of problem settings. Logic puzzles are used to emphasize that this
is not limited to typical OR problems.

Of course, the main goal when teaching mathematical programming (and OR in general) is
to enable students to identify problems in practice and to solve them. Beyond that, however,
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another goal is to improve the general analytical skills of the students. In this context, we find
that modeling logic puzzles is a valuable addition to the modeling of the usual OR problems.
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