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Abstract. In this paper, we propose a general model for various scheduling problems that

occur in container terminal logistics. The scheduling model consists of the assignment of jobs

to resources and the temporal arrangement of the jobs subject to precedence constraints and

sequence-dependent setup times. We demonstrate how the model can be applied to solve

several different real-world problems from container terminals in the port of Hamburg (Ger-

many). We consider scheduling problems for straddle carriers, automated guided vehicles

(AGVs), stacking cranes, and workers who handle reefer containers. Subsequently, we discuss

priority rule based heuristics as well as a genetic algorithm for the general model. Based on

a tailored generator for experimental data, we examine the performance of the heuristics in

a computational study. We obtain promising results that suggest that the genetic algorithm

is well suited for application in practice.
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1 Introduction

In the 1960s, the container was introduced as a universal carrier for various goods. It soon became a

standard in worldwide transportation. The success of the container is associated with the increasing

containerization (which means that the number of goods transported in containers has steadily

grown) and with increasing world trade. Container terminals are continuously facing the challenge

of strong competition between ports and of turning around more and larger ships in shorter times.

This leads to the necessity to use the highly expensive terminal resources such as quai cranes,

straddle carriers, automated guided vehicles, and stacking cranes as efficiently as possible. A key

factor of success is the optimization of the logistic processes. Therefore, many researchers and

practitioners have developed optimization approaches for container terminal logistics.

Important optimization problems include the assignment of berths to arriving vessels (see Guan

and Cheung [12], Imai et al. [18, 19], Lim [29]) and the assignment of quai cranes to vessels

or ship-bays (see Daganzo [4], Peterkofsky and Daganzo [34]). A berth assignment approach

which simultaneously considers quai crane capacities has been developed by Park and Kim [33].

Scheduling the container transport on the terminal has been studied for two different types of

equipment, namely straddle carriers (see Böse et al. [3], Kim and Kim [26], Steenken et al. [37])

and automated guided vehicles (AGVs, see Bae and Kim [1]). The case of multi-load AGVs (i.e.,
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AGVs which can carry more than one container at a time) has been discussed by Grunow et

al. [11]. Also the problem of allocating and scheduling stacking cranes has been considered (see

Zhang et al. [44]). An integrated scheduling approach for automated stacking cranes and automated

guided vehicles has been proposed by Meersmans and Wagelmans [31]. A method for sequencing

the containers to be loaded onto a ship has been developed by Kim et al. [22]. Strategies for

locating containers in the yard have been discussed for several problem settings (see de Castilho

and Daganzo [5], Kim and Kim [23], Kim et al. [24], Taleb-Ibrahimi et al. [39], Zhang et al. [43]). In

order to study the complex processes at container terminals with their dynamic nature, simulation

models have been developed (see Gambardella et al. [8, 9], Kim et al. [25], Legato and Mazza

[28], Yun and Choi [42]). A simulation study to compare different automated vehicle types at a

container terminal has been provided by Vis and Harika [41]. Finally, a method to generate data

for experiments with optimization and simulation approaches has been suggested (see Hartmann

[15]). Detailed literature surveys have been given by Meersmans and Dekker [30] as well as Vis

and Koster [40].

In this paper, we introduce a general model for scheduling container terminal resources such

as different types of equipment and manpower. This way, we take an approach that is different

from the scheduling papers listed above because we provide a model that is not designed for a

single application. Our model consists of a set of jobs (which could be transportation tasks or

other activities) that must be scheduled and assigned to a resource. For the temporal arrangement

of the jobs, sequence-dependent setup times have to be observed. They can be used to cover,

e.g., the empty times of the equipment between two container transports. The objective is to

minimize the average lateness per job as well as the average setup time. In order to demonstrate the

generality of our model, we present four applications from the port of Hamburg (Germany), namely

straddle carriers, automated guided vehicles (AGVs), stacking cranes, and workers. Subsequently,

we propose priority rule heuristics and a genetic algorithm for the general model and analyze

them in a computational study. The paper closes with a summary of the results and discusses

opportunities for future research.

2 A General Model for Container Terminal Scheduling

Problems

In this section, we propose a general model for scheduling problems in container terminal logistics.

After the definition of the model, we outline how several real-world scheduling problems can be

captured by the general model.

2.1 Model Formulation

We consider a set J = {1, . . . , n} of jobs that have to be carried out using a set R = {1, . . . ,m} of

identical resources. Each job j ∈ J has to be executed on one of the resources. Since the resources

are identical, each job can be performed on any of the resources. Each resource r ∈ R can be

occupied with only one job at a time.

Each job j ∈ J has a processing time pj > 0. Before job j can actually be processed, a setup

time is required. Let ij ∈ J denote the job that is executed on resource r ∈ R immediately before

job j. A sequence-dependent setup time sij ,j ≥ 0 has to be taken into account before processing

job j. Once started, a job must not be interrupted, that is, both the setup and the processing phase

of a job must be carried out as a non-preemptive whole. These requirements can be summarized

as fij + sij ,j + pj ≤ fj where fj is the finish time of job j ∈ J . For the setup times, the following

triangle inequality must hold: We assume sik ≤ sij + sjk for any three jobs i, j, and k.

Some of the jobs may be related by precedence constraints. The predecessors of job j are given

by the set Pj (analogously, the successors of job j are given by the set Sj). The precedence relation

between a job j and a predecessor i ∈ Pj is specified by a time lag τij ≥ 0. The latter implies
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that job j must finish at least τij units later than job i, that is, fi + τij ≤ fj . τij = 0 represents

a so-called end-to-end constraint because job j must not finish before job i finishes. τij = pj is a

so-called end-to-start constraint since job j must not start before the finish time of job i. Note that

also other types of precedence constraints can be expressed with the general time lags employed

here (further details can be found in Bartusch et al. [2]).

Each job j ∈ J is related to two specific time instants. First, time dj is the due date of job

j. That is, job j should be completed at or before time dj . Completing job j later than time dj
is allowed, but it will lead to penalty costs in the objective function. Second, time ej denotes the

earliest time at which resource r ∈ R that carries out job j is available again after the execution of

job j. Hence, if job j is completed earlier than time ej , then resource r becomes available at time

ej . Otherwise, resource r becomes available immediately after the completion of job j. Consider

the finish time fj of a job j and the earliest availability time eij of the job ij that is executed

immediately before job j on the same resource. We can summarize the restriction imposed by the

earliest availability time by eij + sij ,j + pj ≤ fj .
We assume that the model is applied repeatedly in a rolling planning horizon. Therefore, the

scheduling problem must take the initial state of each resource into account, that is, the availability

time and the setup state of that resource. The initial state of a resource is characterized by the last

job carried out by that resource. For each resource r ∈ R, we denote the last job as j+r . This last

job is a dummy job in the sense that it is assumed to be fixed, that is, it cannot be (re-)scheduled.

The last jobs are comprised in the set J+ = {j+r |r ∈ R}, for which we assume J ∩ J+ = ∅. Each

last job j+r is associated with two types of information. First, it is related to a finish time fj+r
that reflects the time at which resource r is available. Note that fj+r ≥ tnow must hold, where tnow
denotes the current time (without loss of generality, we assume tnow = 0). Second, job j+r ∈ J+

contains the initial setup state of resource r ∈ R (hence the setup time sij must be given for all

i ∈ J ∪ J+ and j ∈ J). Let us emphasize again that only the jobs in J (and not those in J+) are

considered for scheduling.

The problem now is to find a schedule for the jobs j ∈ J , that is, a resource rj and a finish

time fj for each job j ∈ J such that all constraints given above are observed. The objective is to

minimize the weighted sum of average lateness per job and average setup time per job. The weight

for the average lateness per job is denoted as αL while αS is the weight for the average setup time

per job. Formally, the objective function can be given as

minimize αL ·
1

n
·
∑
j∈J
fj>dj

(fj − dj) + αS ·
1

n
·
∑
j∈J

sij ,j .

Note that lateness and setup times should be measured on the same scale (e.g., seconds). Lateness

minimization and hence observing the due dates is one of the most important goals in practice. In

the applications, setup times correspond to empty times of resources which should be minimized

especially if the due dates are not tight.

The model contains several features that are well known from other scheduling problems in the

literature. The concept of jobs with precedence constraints and resource requests can also be

found in the classical resource-constrained project scheduling problem (see Pritsker et al. [35]).

Time lags and different types of precedence constraints have been studied in connection with

project scheduling as well (see Bartusch et al. [2]). Moreover, the resource assignment part of

the new model is a special case of the multi-mode extension of the resource-constrained project

scheduling problem (see Elmaghraby [7], Talbot [38]). The objective of minimizing the lateness

with respect to due dates has also been considered in the context of project scheduling (see, e.g.,

Kapuscinska et al. [21]). The concept of sequence-dependent setup times occurs in many problems

in the field of lotsizing and batching (see Jordan [20]). We will make use of the similarity between

the new model and resource-constrained project scheduling when designing heuristics for the new

model.
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Of course, the model outlined above is a rather abstract formulation. The generality of the

approach enables us to apply it to different problem settings. The jobs reflect tasks that have to be

carried out in container handling. The resources can reflect the technical equipment for container

handling or manpower. The setup and processing times can correspond to moving a resource to

some location, moving a container, or other tasks. Several practical applications will be given in

the following subsections.

In practice, all applications are embedded in an overall terminal control system. Once a resource

(e.g., straddle carrier, automated guided vehicle, stacking crane, reefer worker) has completed a

job, the related scheduling procedure should be executed, and the resource should be assigned

its next job according to the new schedule. This means that rescheduling should be frequently

done such that all decisions are based on the current data. Despite rescheduling before each job

assignment, it should be useful to compute schedules with a horizon of several successive jobs. This

is because a longer horizon increases the degrees of freedom on when to execute a job the due date

of which is not tight. While short horizons would lead to a first-come-first-serve-like approach,

longer horizons allow to exploit the possibility of starting a job at a time which leads to a shorter

setup time.

Finally, note that the model structure with only a single resource type implies that we have a

separate problem for each resource type. This allows to define a general model that is independent

of the terminal configuration (integrated models with more than one resource type are of course

possible and might be promising, but they would be much more dependent on the actual terminal

and thus less general).

2.2 Application to Straddle Carriers

Many container terminals employ straddle carriers (sometimes also called van carriers) for trans-

portation of containers on the terminal. Straddle carriers are used for transportation between the

stack on the one hand and other locations such as a quai crane, the area for external trucks, or

the train area on the other hand. Since straddle carriers are able to unload themselves and high

enough to stack containers on top of each other, they can also be employed to transport containers

to their positions within a yard block. Thus, they can also carry out shuffle moves within a block,

that is, they can move a container to another position in case it stands on top of another container

that must be moved out. If stacking cranes serve the blocks, however, straddle carriers transport

containers from and to hand-over positions at a block, and they do not carry out shuffle moves.

Of course, the set of the transportation tasks of the straddle carriers defines the set of jobs for

scheduling, and the number of resources is given by the number of straddle carriers. The processing

time pj of a job j is the time that a straddle carrier needs for the transportation of a container

between two locations on the terminal. It is defined as the time between picking up the container

and putting it down. As the locations are fixed, the transportation times are assumed as fixed

as well. The setup time sij between two jobs i and j is given by the time that a straddle carrier

requires to get from the position where the container of job i was put down to the pick-up position

of job j. Hence, the setup time models the empty travel time of a straddle carrier. For any two

positions, an estimate of the processing and setup time is usually available for scheduling. Of

course, scheduling decisions can affect only the empty (or setup) times but not the transportation

(or processing) times.

Precedence relations exist between jobs that correspond to containers that stand on top of each

other in the stack. The job i related to an upper container is a predecessor of the job j related

to the lower one (if the upper container is not demanded by a ship, truck, or train, job i is a

shuffle move). The time lag τij is given by a buffer time which assures that the lower container

can be picked up after the upper container has been moved away (although the latter job needs

not necessarily be completed before the lower container is picked up).

The due date dj of a job j is determined as follows. Let us first consider the case that a straddle

carrier is supposed to bring a container from the stack to another location such as a quai crane
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or an external truck. In this case, the due date reflects the latest time at which the container

should have arrived there. For a quai crane waiting for a container, the due date corresponds to

the time at which the quai crane requires the container in order to keep its loading sequence on

time. Considering an external truck, the due date reflects the acceptable waiting time of the truck

driver. Moreover, keeping the waiting times for trucks short helps to avoid congestions in the truck

area. In the second case, a straddle carrier is supposed to bring a container to the stack. Here,

the due date is used to model the latest time at which a straddle carrier has to pick up a container

at some location. For example, an arriving container must be picked up from a quai crane or an

external truck at or before the due date. In this case, we have a due date for pick-up, say d̄j .

The latter can be transformed into a due date related to the completion of the job by setting

dj = d̄j + pj . This is possible because the time between pick-up and completion is a constant,

namely the transportation or processing time pj . Recall that the due date is always related to the

finish time of a job (see the objective function).

The earliest availability time ej of a resource after carrying out a job j is used to model the

blocking of straddle carriers by other resources. Consider a job j that requires a straddle carrier

to transport a container from a quai crane to a yard block. Let ēj denote the time at which the

container is available for the straddle carrier (i.e., the time at which it has been put on the ground

by the quai crane). The earliest release time of the straddle carrier is ej = ēj + pj which reflects

the earliest possible time to complete this job. Now let us consider a job j to transport a container

from the stack to a truck which is already waiting for the container. In this case, we have ej = 0

because the straddle carrier is available immediately after completing the job. These two cases

should be sufficient to illustrate the use of the earliest release times. Generally speaking, we have

ej > 0 if the straddle carrier will have to wait for another resource, whereas we have ej = 0 if it is

not blocked by another resource.

The use of the initial state and of the objective function is obvious. The lateness component

of the objective function attempts to serve the quai cranes (and also trucks) on time such that

they do not have to wait. The setup time component leads to short empty travel times. Summing

up, we have employed all features of the general scheduling model of Subsection 2.1 to capture the

straddle carrier scheduling problem.

2.3 Application to Automated Guided Vehicles

On modern container terminals with a high degree of automation, often automated guided vehicles

(AGVs) are employed to carry containers between the quai and the yard blocks. Unlike straddle

carriers, AGVs are unable to unload themselves (automated vehicles with loading and unloading

capability are often referred to as automated lifting vehicles, see Vis and Harika [41]—note that

those vehicles can be modeled in the same way as straddle carriers). Therefore, stacking cranes are

needed to serve the yard blocks. Hence, the jobs to schedule are the transportation of containers

from a quai crane to a stacking crane and from a stacking crane to a quai crane. While the former

case corresponds to the discharging of a vessel, the latter case occurs when loading a vessel.

The application of the general model to the AGV case is similar to the straddle carrier case

with only a few differences. Again, the processing time pj reflects the transportation of a container

while the setup time sij models the empty time between two successive jobs. The due dates dj
reflect the latest hand-over times at the quai cranes. If an AGV exceeds its due date, this will lead

to a waiting time of the quai crane. Thus, keeping the due dates is crucial for a high quai crane

productivity and hence for a short time in port for the vessels. The earliest release times ej consider

the fact that AGVs can be blocked by the other terminal resources. Since AGVs cannot unload

themselves, an AGV arriving before its due date will have to wait for the crane related to this job.

Therefore, the earliest release time is equal to the due date, that is, ej = dj . Finally, precedence

relations are needed to control the order of AGVs arriving at a quai crane with a container. This

AGV order is important because the sequence of containers to be loaded onto a vessel is often

fixed. The time lag τij between two successive jobs i and j related to the same quai crane is given
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by a small buffer time that allows the first AGV to leave the quai crane position (typically, one

will have 0 < τij ≤ dj − di). Note that there are no precedence relations between jobs related to

different quai cranes.

2.4 Application to Stacking Cranes

Usually, the stack is organized in several yard blocks. Many container terminals employ stacking

cranes to serve these blocks. Normally, there is one crane for each block (occasionally, two cranes

per block are used). So-called rail-mounted gantry cranes cannot be moved to another block. On

the other hand, so-called rubber-tyred gantry cranes can be moved, but this takes a long time

and is not done very often (decisions to transfer a crane are based on workload estimations of

the blocks, see Zhang et al. [44]). Thus, for both crane types, crane assignments to blocks can be

assumed to be fixed for the detailed scheduling problem considered here. Moreover, the assignment

of containers to blocks is given (it is not a part of this scheduling problem). Therefore, we have a

separate crane scheduling problem for each block. That is, we consider the set of jobs associated

with a single block, and we have a single crane resource (or, in case of double cranes, two resources).

The jobs include transportation moves between positions within the block on the one hand and

AGVs, straddle carriers, or external trucks on the other hand. Furthermore, jobs representing

shuffle moves have to be taken into account.

As for the straddle carrier case, we have precedence relations between jobs that correspond to

containers that stand on top of each other. The processing time pj of a job j is the transportation

time that a crane needs between picking up the container and putting it down. Again, the setup

time sij between two jobs i and j is given by the time that the crane requires to get from the

position where the container of job i was put down to the pick-up position of job j. The due date

dj of a job j determines the latest acceptable completion time and hence also the waiting time of

the other resource (AGV, straddle carrier) or the external truck. The earliest release times again

model the blocking of the crane by other resources. For example, if a crane serves an AGV which

arrives in a just-in-time fashion, the crane will not be available before the due date, that is, we

have ej = dj . On the other hand, if a crane is to serve an external truck which has already arrived

at the block, it will be available after completing the job, that is, we have ej = 0.

2.5 Application to Reefer Workers

Reefer containers are used to carry goods that require a controlled temperature (such as refrigerated

or frozen goods). They have a device for temperature regulation which requires electricity. Hence,

they are stored in specific yard blocks or areas of blocks that provide electricity connections. Reefer

containers require special handling by a manpower resource, the reefer workers.

The jobs carried out by the reefer workers are connecting arriving containers, disconnecting

departing ones, doing small repair tasks, and controlling the temperature of the reefer containers

in the stack. For each of these job types, a processing time pj is given. Note that, unlike the

previously described applications, here the processing time does not correspond to moving to

another location. The use of the setup times, however, is similar to equipment scheduling. The

setup time sij between a job i and a job j is the time that a reefer worker needs to move from the

container associated with job i to the container related to job j. An estimate of this time can be

assumed to be available. This estimate is based on the container positions in the stack.

For connection jobs, the due date dj reflects the time that a reefer container is allowed to be

without electricity. Of course, a container can keep its temperature in the allowed range only for

a certain time if it is without electricity. For disconnection jobs, the due date reflects the latest

time the container must be disconnected such that the stacking crane or straddle carrier can pick

it up on time (the terminal control system might include a buffer time when computing the due

date). For repair jobs and temperature control jobs, a due date is given as well. After a worker has

completed a job, he can immediately move on to the next job. Therefore, we can set the earliest

availability times to ej = 0. A definition of precedence relations is not necessary.
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In practice, the reefer workers are often equipped with portable radio data sets. When they

have completed a job, they transmit this information to the terminal control system via the radio

data set. In return, they get the next job.

3 Priority Rule Based Heuristics

3.1 Single Pass Dispatching Method

In this subsection, we present a simple dispatching heuristic for the container terminal scheduling

problem. This method is a straightforward way to build job sequences for the resources. The

following steps are repeated until all jobs have been scheduled:

• Compute eligible jobs. Compute the set E of eligible jobs as the set of the currently

unscheduled jobs of which all predecessors have already been scheduled.

• Select job. Select the job j∗ to be scheduled next as the eligible job with the smallest due

date.

• Select resource. Select the resource r∗ that leads to the smallest increase in the objective

function, that is, r∗ produces the smallest weighted sum of lateness and setup time for job

j∗ among all resources.

• Update schedule. Schedule job j∗ at the end of the current job sequence of resource r∗.

The criteria for selecting a job and a resource can be seen as priority rules. According to the

classification of Kolisch and Hartmann [27], this approach is a deterministic single-pass priority

rule method. An alternative (and equally straightforward) rule for resource selection could be to

select the resource with the earliest availability time in the current partial schedule. In Subsection

6.2, we carry out some computational experiments to compare both rules.

3.2 Multi Pass Sampling Method

The single pass priority rule based method described above produces only one schedule. We

now attempt to improve the results by allowing for multiple passes. In each pass, a schedule is

constructed. In order to produce different schedules, we randomize the minimum due date priority

rule in the job selection process. We obtain a multi-pass biased random sampling method (see

Kolisch and Hartmann [27]). Hence, the sampling heuristic is essentially a repeated application of

the single pass method in which the job selection mechnism is modified.

The job selection mechanism is adapted as follows. We define a parameter δ which determines

how many of the jobs in the eligible set E are considered. Let Eδ denote the set of the δ eligible

jobs with the smallest due dates in E. Now we select the eligible job j∗ ∈ Eδ to be scheduled next

on a biased random basis. The probability for eligible job j ∈ Eδ to be selected is given by

p(j) =
dmax − dj + 1∑

i∈Eδ(dmax − di + 1)
,

where dmax = max{dj | j ∈ Eδ} is the maximal due date. The resource selection mechanism is the

same as in the single pass method. Once a schedule has been completed, the sampling heuristic

proceeds to compute the next one. This is repeated until a time limit is reached, and the best

schedule found is reported.

The priority rule based definition of the probabilities p(j) implies that jobs with tighter due

dates are more likely to be selected. This way, these jobs will be scheduled earlier, and the risk

of exceeding their due dates is reduced. The parameter δ excludes jobs with non-tight due dates

from consideration. Therefore, using small values for δ puts a focus on the jobs with the tightest

due dates.
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Two special cases of this sampling approach should be mentioned. δ ≥ n induces conventional

sampling in which the eligible set is not restricted. δ = 1 implies that only the job with the smallest

due date can be considered. Thus, in each pass, the same schedule is computed which is equal to

the schedule found by the deterministic single pass approach.

4 Genetic Algorithm

Genetic algorithms (see Goldberg [10], Holland [17]) adopt the principles of biological evolution to

solve hard optimization problems. For our genetic algorithm (GA), we exploit the similarities of

the general container terminal scheduling problem to the resource-constrained project scheduling

problem. These similarities allow us to use the project scheduling GA of Hartmann [13] as a starting

point. This GA will be adapted to solve the problem introduced in this paper. In particular, the

representation, the decoding procedure, and the construction of the initial population require

problem-specific knowledge.

4.1 Basic Scheme

We apply the generational management framework of Eiben et al. [6]. The GA starts with the

computation of an initial population, i.e., the first generation. The number of individuals in the

population is referred to as POP . The GA then determines the fitness values of the individuals

of the initial population. After that, we apply the crossover operator to produce new individuals

(“children”) from the existing ones (“parents”). Subsequently, we apply the mutation operator to

the newly produced children. After computing the fitness of each child, we add the children to the

current population. Then we apply the selection operator to reduce the population to its former

size POP . Doing so, we obtain the next generation to which we again apply the crossover operator

and so on. This process is repeated until a time limit is reached. Of course, other stopping criteria

can be employed as well, e.g., a maximal number of generations or a number of generations without

improvement of the best objective function value found so far. More formally, the GA scheme can

be summarized as follows. Here, P denotes the current population (i.e., a set of individuals), and

C is the set of children.

generate POP individuals for the initial population P;

apply decoding procedure to compute fitness for individuals I ∈ P;

while time limit is not reached do

begin

produce a set C of children from P by crossover;

apply mutation to children I ∈ C;
apply decoding procedure to compute fitness for children I ∈ C;
P := P ∪ C;
reduce population P to size POP by means of selection;

end.

4.2 Problem Representation

Genetic algorithms for scheduling problems often do not operate directly on schedules but on

representations of schedules. The latter are then transformed into schedules by means of a problem-

specific decoding procedure. The advantage of such an indirect approach is that it allows to employ

standard representations together with standard genetic operators (crossover, mutation).

In our genetic algorithm, a schedule is represented by a precedence feasible job list (j1, . . . , jn)

and three additional genes βL, βS , and βW , such that an individual I is given as

I = ( (j1, . . . , jn) , βL, βS , βW ).
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In a job list, each job appears exactly once, that is, we have J = {j1, . . . , jn}. A job list is

precedence feasible if all predecessors of a job j appear in the list before job j, that is, Pji ⊆
{j1, . . . , ji−1} for i = 1, . . . , n. A job list determines the order in which the jobs are scheduled by

the decoding procedure. The job list representation is a generalization of the classical permutation

based representation (see Reeves [36]). It has been shown to be superior to other representations

for resource-constrained scheduling problems (see Hartmann [13, 14]).

While the representation controls the scheduling order, the task of assigning resources to jobs

will be left to the decoding procedure. The remaining genes βL, βS , and βW are parameters

that are used by the decoding procedure when selecting a resource for a job (see the following

subsection). Note that using algorithm parameters in the genetic representation implies that they

are exposed to evolution and survival-of-the-fittest (see Goldberg [10]). This is often referred to as

self-adaptation.

4.3 Decoding Procedure and Fitness

The decoding procedure employs problem-specific features to transform the representation into a

solution for the container terminal scheduling problem. It scans the job list from left to right and

successively schedules the jobs j1, . . . , jn using the following steps:

• Select job. Select the next job ji from the job list.

• Select resource. Evaluate the partial schedules arising from assigning job ji to resource

r ∈ R as last job by computing the resulting lateness lji(r), setup time sji(r), and waiting

time wji(r) of job ji. A waiting time occurs if a resource completes a job earlier than the

earliest release time, i.e., the resource would have to wait until the earliest release time before

the next job can be started. These three times are weighted with the related genes of the

individual, leading to yji(r) = βL · lji(r) + βS · sji(r) + βW ·wji(r). Now select a resource r∗

with the best evaluation yji(r
∗) = min{yji(r) | r ∈ R}.

• Update schedule. Schedule job ji at the end of the current job sequence of resource r∗.

While the scheduling order of jobs is prescribed by the job list representation, the decoding

procedure takes care of the resource assignment part of the problem. The usage of the weight

genes βL, βS , and βW for resource evaluation is based on two ideas. First, in the iterations

of the decoding procedure, other settings than the overall objective function parameters might be

useful. Second, they allow to penalize possible waiting times which might be worth avoiding during

schedule computation because waiting times reduce the capacities that will be left for the jobs to

be scheduled next. (Note, however, that considering waiting times in the overall objective function

would not make much sense.) The fitness of an individual is defined as the objective function value

of the schedule related to the individual.

4.4 Initial Population

Let us now define how to determine the first generation containing POP individuals. For the

construction of job lists, we employ the sampling strategy of Subsection 3.2. That is, in each

step, we determine the restricted eligible set Eδ and draw a job j ∈ Eδ using the due date based

probability p(j). The selected job j is then added at the end of the job list. Next, we draw the

genes βL, βS , and βW using a parameter ε ≥ 0 which defines a range for the genes:

βL ∈ [ max{0, αL − ε}, min{αL + ε, 1} ] ,

βS ∈ [ max{0, αS − ε}, min{αS + ε, 1} ] ,

βW ∈ [ 0, ε ] .
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Observe that the genes related to lateness and setup time are drawn from the ε-neighborhood of

the respective objective function weights (for the waiting time, there is no related weight in the

objective function). Having determined these three genes, their values are normalized such that

we obtain βL + βS + βW = 1, that is, we set βX := βX
βL+βS+βW

for X ∈ {L, S,W}.
Considering the job list construction, one might as well think of the following straightforward

approach: The latter selects jobs on a pure random basis without due date bias, that is, with equal

probabilities p(j) = 1
|E| , where E is the unrestricted eligible set. Using the sampling method instead

should lead to more promising job lists while still maintaining reasonable genetic variety. The

parameter ε controls the deviation of the weight genes from the objective function weights. Note

that ε = 0 reduces the resource evaluation to the respective objective function weights (βL = αL
and βS = αS) without considering waiting times (βW = 0). The benefit of biased sampling and of

the weight genes will be examined further in the computational tests of Subsection 6.3.

4.5 Crossover

For crossover, the current population is randomly partitioned into pairs of individuals. From each

pair of individuals (parents), two new individuals (children) will be produced. Let us assume that

two individuals of the current population have been selected for crossover. We have a mother indi-

vidualM = ( (jM1 , . . . , jMn ) , βML , β
M
S , β

M
W ) and a father individual F = ( (jF1 , . . . , j

F
n ) , βFL , β

F
S , β

F
W ).

Now two child individuals have to be constructed, a daughter D and a son S.

Let us start with a definition of the daughter D = ( (jD1 , . . . , j
D
n ) , βDL , β

D
S , β

D
W ). Combining

the parent’s job lists, we have to make sure that each job appears exactly once in the daughter’s

job list. We make use of a general crossover technique presented by Reeves [36] for permutation

based genotypes. For the one-point crossover, we draw a random integer q with 1 ≤ q ≤ n. The

daughter’s job list is determined by taking the job list of the positions i = 1, . . . , q from the mother,

that is,

jDi := jMi .

The remaining positions i = q + 1, . . . , n are derived from the father. However, the jobs that have

already been selected must not be considered again. The remaining jobs are taken in their relative

order in the father’s job list, that is, we set for i = q + 1, . . . , n

jDi := jFk where k = min{1 ≤ u ≤ n | jFu /∈ {jD1 , . . . , jDi−1} }.

The three weight genes are taken from the mother, that is, we set

βDL := βML , βDS := βMS , βDW := βMW .

The son individual is computed analogously. For the son’s job list, the weight genes and the first

part of the job list are taken from the father and the second part is taken from the mother.

In addition, we have tested a two-point crossover variant. Here, we draw two random integers

q1 and q2 with 1 ≤ q1 < q2 ≤ n. Analogously to the one-point variant, the weight genes and the

first part of the job list until q1 are taken from one parent. The second part of the job list between

positions q1 +1 and q2 is taken from the other parent, following the same logic as above. The third

part of the list between q2 + 1 and n is again taken from the first parent.

This crossover strategy creates job lists in which each job appears exactly once. Moreover,

it has been proven by Hartmann [13] that the resulting job lists are precedence feasible, given

that the parents’ job lists were precedence feasible as well. Since this crossover operator produces

feasible offspring, there is no need for a repair operator. This property leads to a good inheritance

behavior of building blocks of solutions. Also note that taking the weight genes and the first part

of the job list from the same parent implies that the first part of the related schedule is inherited.

This means that good partial schedules can be passed on to the offspring without being destroyed

by crossover.
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4.6 Mutation

The mutation operator is applied to each newly produced child individual. The probability for

each gene to be mutated is denoted as pmutation.

In the first step, we consider the mutation of the job list for which two alternatives have been

considered. The swap variant is defined as follows. We move through the job list from left to right.

Consider a current position i ∈ {1, . . . , n− 1} in the job list

(j1, . . . , ji, ji+1, . . . , jn).

If ji is not a predecessor of ji+1, we interchange these two successive jobs with probability pmutation,

which leads to a new job list

(j1, . . . , ji+1, ji, . . . , jn).

The shift variant can be described as follows. Again, we move through the job list from left to

right. In this variant, however, we apply a right shift to each job with a probability of pmutation.

Consider a current position i ∈ {1, . . . , n− 1} in the job list

(j1, . . . , ji, . . . , jh, . . . , jz, . . . , jn).

Let z be the smallest index of the successors of job ji, that is, z = min{k | jk ∈ Sji}. Now job ji
can be shifted behind some randomly drawn position h ∈ {i+ 1, . . . , z− 1}, which leads to job list

(j1, . . . , ji−1, ji+1, . . . , jh, ji, jh+1, . . . , jz, . . . , jn).

That is, job ji is right shifted within the job list and inserted immediately after some job jh.

Clearly, the resulting job list is still precedence feasible.

The second step considers the three parameters for the decoding procedure. Using again pa-

rameter ε (see Subsection 4.4), the operator randomly draws

β′X ∈ [ max{0, βX − ε}, min{βX + ε, 1} ]

for X ∈ {L, S,W}. Again, each of these genes is mutated with probability pmutation. Subsequently,

the parameters are normalized as described in Subsection 4.4.

4.7 Selection

After the newly produced individuals have been added to the current population, the next step

is to select the individuals that survive and make up the next generation. Following the study of

Hartmann [13], we decided to employ the deterministic ranking method which follows a survival-

of-the-fittest strategy (cf., e.g., Michalewicz [32]). This method sorts the individuals with respect

to their fitness values and selects the POP best ones while the remaining ones are deleted from

the population (ties are broken arbitrarily).

5 Generating Experimental Data

5.1 Generator

In order to demonstrate the applicability of the general scheduling model and the genetic algorithm,

we carried out several computational experiments. These experiments required test instances as

input data for the heuristic. In order to obtain a large number of test instances, we developed

a data generator for our problem setting. It is controlled by parameters that allow to produce

instance sets with specific characteristics. In particular, the parameters enabled us to produce

quite realistic test sets for the container terminal applications mentioned in Section 2.

The generator works as follows. The number n of jobs and the number m of resources are

specified by the user as parameters. In addition to the n regular jobs, the m dummy jobs that
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Test set number of jobs number of resources scheduling horizon

straddle carrier 380 75 30 min

AGV 100 50 15 min

reefer worker 120 5 60 min

stacking crane 8 1 30 min

Table 1: Characteristics of the four generated test sets

represent the initial setup states for the resources are generated. Each (non-dummy) job j is

randomly assigned a processing time pj from {pmin, . . . , pmax}, where pmin and pmax are parameters

that denote the minimal and maximal processing time, respectively. Next, we generate a setup time

sij between two consecutive jobs i and j on the same resource. The following approach is designed

to produce setup times which do not violate the triangle inequality. It employs two parameters S1

and S2, where S1 can be interpreted as the minimal and S1 +S2 as the maximal setup time. First,

each job j is randomly assigned a value yj ∈ {0, . . . , S2}. Then the setup time between jobs i and

j is defined as sij = S1 + |yj − yi|. On the basis of a parameter T for the scheduling horizon, a due

date dj is drawn from {S1 + pj , . . . , T} for each job j. The earliest release times are determined

using a parameter ρ ∈ [0, 1]. This parameter allows to control whether the earliest release time

ej of a job j is equal to its due date or zero (recall that these were the two typical cases in the

applications of our model). With probability ρ, we set ej = 0 and with probability 1 − ρ, we set

ej = dj .

5.2 Test Sets

Using the generator described in the previous subsection, we generated a set of test instances for

each of the four container terminal applications discussed in Section 2. That is, we have a straddle

carrier set, an AGV set, a reefer worker set, and a stacking crane set. These four sets differ in the

settings of the generator parameters and hence in their characteristics. We attempted to generate

realistic instances which may similarly occur in practice at peak time on a medium-sized container

terminal. The characteristics of the test sets can be summarized as follows (see also the main

parameter settings displayed in Table 1):

• The straddle carrier set contains the largest instances. This is because we assume the straddle

carriers to carry out transportation jobs both on the seaside and on the landside as well as

shuffle moves. This set includes the largest number of resources and jobs and a medium

scheduling horizon.

• The AGV case considers only transportation jobs between quai and stack. Therefore, we have

selected smaller numbers of jobs and resources than for the straddle carrier set. Moreover,

we have a shorter scheduling horizon because shuffle moves are not considered.

• In the reefer worker set, we have fewer resources than in the previous two cases but a longer

scheduling horizon. The latter results from substantially longer time windows for reefer jobs.

• The stacking crane case is the smallest problem setting with only one resource (corresponding

to one yard block served by a single crane). Due to shuffle moves and landside operations

with less tight due dates, the horizon is the same as for the straddle carrier set.

For each of the test sets, the parameter settings were done in a way that leads to scarce

resources. Scarce resources make it difficult to find schedules with small lateness—thus, we obtain

challenging test problems. In fact, the parameters were adjusted such that we have an average

lateness > 0 even for the best heuristic. This allows for a meaningful comparison of heuristics on

the basis of the objective function values. Moreover, the case of scarce resources is particularly
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Problem heuristic objective lateness setup time late jobs

Straddle carrier dispatching 31.0 27.3 s 63.9 s 27.5%

sampling 26.2 22.4 s 61.9 s 24.8%

GA 10.4 4.6 s 62.1 s 15.9%

AGV dispatching 22.8 17.6 s 69.2 s 20.5%

sampling 18.4 13.0 s 67.3 s 18.6%

GA 13.7 7.4 s 69.8 s 19.6%

Reefer worker dispatching 87.4 89.4 s 69.1 s 46.3%

sampling 13.1 9.5 s 45.5 s 10.3%

GA 8.8 5.8 s 34.9 s 7.4%

Stacking crane dispatching 30.1 28.1 s 47.6 s 30.1%

sampling 12.4 9.4 s 38.8 s 13.0%

GA 12.4 9.5 s 38.4 s 13.1%

Table 2: Comparison of the heuristics (time limit: 1 s on Pentium 4 with 1.6 Ghz)

important in practice. In this case, minimization of lateness is crucial for successfully carrying

out the logistic processes. For each of the four cases, 250 instances were generated. Hence, the

test set consists of 1,000 instances altogether which should be a reasonable basis for a thorough

computational analysis.

6 Computational Results

6.1 Comparison of the Heuristics

In order to evaluate the heuristics, they were coded in ANSI C and compiled with the lcc compiler.

The experiments were carried out on a Pentium 4-m based computer with 1.6 GHz running under

Windows XP. In order to consider the real-time application of the scheduling model which requires

very short computation times, a time limit of one second has been selected. Recall that rescheduling

should be done after a resource has completed its last job and before it is assigned its next job,

such that the computation time is waiting time for the resource.

The weights of the objective function have been set to αL = 0.9 and αS = 0.1 which should be

a reasonable choice in practice. Meeting a due date is considered to be more important than setup

time minimization (also, minimizing lateness will probably lead to small setup times). In case of

small workload and thus plenty resource capacities, the lateness criterion becomes less critical and

the setup time minimization plays a more important role.

Table 2 gives the results for the single pass dispatching method of Subsection 3.1, the sampling

heuristic of Subsection 3.2, and the genetic algorithm of Section 4. The results are given separately

for each of the four problem sets of Table 1. For each heuristic, we report the average objective

function value together with the average lateness per job and the average setup time per job (both

in seconds). The average percentage of late jobs is also displayed.

For the straddle carrier, AGV, and reefer worker cases, the sampling method performs better

than the single pass approach while the GA outperforms both. In the stacking crane case, the

sampling method and the GA produce similar results which is due to the small instance size. Also

recall that we have an average lateness > 0 due to the design of the test instances. Considering the

straddle carrier and the AGV cases, the GA reduces the lateness while all methods lead to similar

setup times. In the reefer worker case, the GA reduces both the lateness and the setup times. Note

that the long scheduling horizon in the reefer case leads to a greater optimization potential than

in the other cases. The GA appears to be best suited for exploiting this optimization potential.
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Problem priority rule objective lateness setup time late jobs

Straddle carrier objective increase 31.0 27.3 s 63.9 s 27.5%

earliest available resource 360.5 375.4 s 226.4 s 86.3%

AGV objective increase 22.8 17.6 s 69.2 s 20.5%

earliest available resource 153.1 145.1 s 224.9 s 68.9%

Reefer worker objective increase 87.4 89.4 s 69.1 s 46.3%

earliest available resource 1367.5 1497.0 s 201.6 s 98.3%

Table 3: Impact of priority rules for resource selection (deterministic single pass dispatching)

Assuming that the test instances are quite realistic, we can state that these results suggest to apply

the GA in practice.

Furthermore, recall that the GA uses priority rules to compute initial solutions and then pro-

ceeds with evolutionary inheritance. This leads to better results than employing these priority

rules over the entire computation time, even if the computation time is rather short. This obser-

vation is in line with studies on other scheduling problems (see [16]), but it should be noted that

such a superior performance of the evolutionary inheritance mechanism is only possible with an

appropriate genetic representation (see also [13]).

The following subsections deal with the configuration of the heuristics and with the effect of

the algorithm parameters. The stacking crane test set will not be considered because the instances

are too small for a meaningful analysis.

6.2 Configuration of the Priority Rule Methods

We start the analysis with a comparison of the priority rules for resource selection in the determin-

istic single pass heuristic of Subsection 3.1. The results given in Table 3 show that the rule based

on the increase in the objective function value leads to much smaller lateness and setup times than

the alternative rule. This demonstrates that a seemingly reasonable rule as the earliest availability

time criterion may in fact produce clearly inferior results. Due to this result, the objective increase

rule is the standard rule in the following experiments with the sampling method (note that it has

also been used to produce the results of Table 2).

Next, we examine the sampling approach in more detail. Again, a time limit of one second

is used. We analyze the impact of parameter δ which determines the number of eligible jobs

considered for sampling (cf. Subsection 3.2). Table 4 displays the sampling results for different

settings of δ. A value of δ = 10 appears to be a good overall choice. Thus, it was selected as the

standard setting which was used to produce the sampling results of Table 2. Also observe that

this sampling approach is better than conventional sampling (δ = n) and deterministic single pass

scheduling (δ = 1). Hence, the restriction of the eligible set for sampling is a good strategy for this

problem setting.

6.3 Configuration of the Genetic Algorithm

In this subsection, we study the impact of the genetic algorithm parameters and provide the

best configuration. Table 5 gives the computational results for various parameter settings. It

is divided into three blocks corresponding to the three problem sets of straddle carriers, AGVs,

and reefer workers. We examine the population size POP , the method to construct an initial

population (simple random or priority based sampling), the number of crossover points C (1 or

2), the mutation rate pmut (between 0.01 and 0.1), the mutation operator (swap or shift), and the

range ε for the decoding procedure genes (between 0 and 1). The first row for each problem case

provides the best parameter settings (this is the standard setting that was used to produce the
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Problem δ objective lateness setup time late jobs

Straddle carrier n 133.7 141.5 s 63.6 s 43.5%

20 26.2 22.4 s 62.0 s 24.3%

10 26.2 22.4 s 61.9 s 24.8%

5 27.0 23.1 s 62.2 s 25.2%

1 31.0 27.3 s 63.9 s 27.5%

AGV n 28.3 23.9 s 68.1 s 23.4%

20 18.2 12.8 s 67.1 s 18.4%

10 18.4 13.0 s 67.3 s 18.6%

5 19.4 14.0 s 67.5 s 19.0%

1 22.8 17.6 s 69.2 s 20.5%

Reefer worker n 132.9 141.9 s 52.2 s 29.2%

20 21.0 18.1 s 47.4 s 12.9%

10 13.1 9.5 s 45.5 s 10.3%

5 13.3 9.7 s 45.4 s 11.7%

1 87.4 89.4 s 69.1 s 46.3%

Table 4: Configuration of the sampling heuristic (time limit: 1 s on Pentium 4 with 1.6 Ghz)

of Table 2). The following rows of each block contain parameter variations which are underlined.

Note that the values for the population size POP have been chosen with respect to the actual

problem size (the more jobs and resources we have, the longer is the computation time for one

schedule, which makes smaller populations within the same time limit reasonable). The standard

settings for the other parameters are the same for all problem sets.

As shown in Table 5, some parameters have a significant impact on the GA results. First,

the initial population should be produced by the sampling approach instead of a straightforward

random assignment. The impact of sampling is stronger for longer scheduling horizons (straddle

carrier and reefer worker cases). For long horizons, random job lists are likely to have jobs with

early due dates in a position at the end of the list, which means that they are considerably late

when they are scheduled. Second, the mutation operator should employ swaps rather than shifts.

Shifting a job by many positions bears the risk that it will be scheduled much too late to meet

its due date. Such a negative effect of the shift operator occurs particularly for the long horizon

associated with the reefer worker case. Third, a range of ε > 0 for the decoding procedure genes has

a positive effect (recall that this means that resources are selected using adapted weights instead

of the original weights of the objective function). This holds particularly for the straddle carrier

and AGV cases where it pays to avoid waiting times which occur if a resource completes a job

before its earliest release time. Note that in the reefer worker case waiting times cannot occur

because there are no earliest release times to be considered. The remaining parameters have only

a very small impact. This means that the GA is robust in the sense that its performance does not

deteriorate if those parameters are chosen according to a rule of thumb.

6.4 Further Results

For the sampling method and the GA, Table 6 reports the average number of schedules that is

computed within the time limit of one second (on a Pentium 4 with 1.6 Ghz). For the GA, also

the number of generations and the population size are given. Generally speaking, the GA appears

to produce a sufficient number of schedules within the short time limit to allow for a successful

evolution. This holds in particular since GAs with good initial solutions require less iterations to

produce near-optimal solutions than GAs which start from random solutions (recall that our GA

employs the priority rule based sampling method to compute the initial generation).
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Problem POP initial C pmut mutation ε objective lateness setup late jobs

Straddle 40 sampling 2 0.05 swap 0.5 10.4 4.6 s 62.1 s 15.9%

carrier 20 sampling 2 0.05 swap 0.5 10.4 4.6 s 62.6 s 16.0%

60 sampling 2 0.05 swap 0.5 10.4 4.6 s 62.4 s 16.1%

40 random 2 0.05 swap 0.5 104.9 109.1 s 67.0 s 37.6%

40 sampling 1 0.05 swap 0.5 10.5 4.7 s 62.3 s 16.0%

40 sampling 2 0.01 swap 0.5 10.4 4.6 s 62.2 s 16.1%

40 sampling 2 0.10 swap 0.5 10.4 4.6 s 62.3 s 16.0%

40 sampling 2 0.05 shift 0.5 11.0 5.3 s 62.7 s 16.7%

40 sampling 2 0.05 swap 0.0 25.2 21.2 s 61.5 s 24.0%

40 sampling 2 0.05 swap 1.0 10.6 4.8 s 62.4 s 16.9%

AGV 60 sampling 2 0.05 swap 0.5 13.7 7.4 s 69.8 s 19.6%

40 sampling 2 0.05 swap 0.5 13.7 7.5 s 69.9 s 19.7%

80 sampling 2 0.05 swap 0.5 13.7 7.6 s 69.7 s 19.7%

60 random 2 0.05 swap 0.5 19.3 13.1 s 75.5 s 26.3%

60 sampling 1 0.05 swap 0.5 13.7 7.4 s 69.8 s 19.7%

60 sampling 2 0.01 swap 0.5 13.8 7.5 s 70.0 s 19.7%

60 sampling 2 0.10 swap 0.5 13.7 7.4 s 70.0 s 19.7%

60 sampling 2 0.05 shift 0.5 13.7 7.4 s 69.9 s 19.8%

60 sampling 2 0.05 swap 0.0 16.8 11.3 s 66.1 s 19.6%

60 sampling 2 0.05 swap 1.0 14.1 7.8 s 69.8 s 19.7%

Reefer 120 sampling 2 0.05 swap 0.5 8.8 5.8 s 34.9 s 7.4%

worker 80 sampling 2 0.05 swap 0.5 8.8 6.0 s 34.6 s 7.6%

160 sampling 2 0.05 swap 0.5 8.8 5.9 s 35.4 s 7.6%

120 random 2 0.05 swap 0.5 137.5 148.5 s 38.4 s 28.6%

120 sampling 1 0.05 swap 0.5 9.2 6.3 s 35.6 s 7.7%

120 sampling 2 0.01 swap 0.5 9.1 6.2 s 34.9 s 7.6%

120 sampling 2 0.10 swap 0.5 8.8 5.8 s 35.2 s 7.4%

120 sampling 2 0.05 shift 0.5 11.4 8.0 s 42.1 s 9.1%

120 sampling 2 0.05 swap 0.0 8.9 6.1 s 34.6 s 7.4%

120 sampling 2 0.05 swap 1.0 8.9 6.0 s 35.2 s 7.5%

Table 5: Configuration of the genetic algorithm (time limit: 1 s on Pentium 4 with 1.6 Ghz)

Furthermore, in both heuristics, the computation time for one schedule increases with the

number of jobs and the number of resources. Hence, the number of schedules computed within the

time limit depends of the problem set. It is also interesting to note that the number of computed

schedules is different for the two approaches. The GA includes additional effort for crossover and

selection. On the other hand, the job selection is faster in the GA where the next job is simply

picked from the chromosome. In the sampling method, the eligible jobs have to computed, and a

randomized selection mechanism is applied. Therefore, if the number of resources is small (as in

the reefer worker case), the job selection makes up for a large part of the computational effort in

the sampling heuristic. Thus, the GA produces more schedules within the same time limit.

7 Conclusions and Research Perspectives

In this paper, we proposed a general optimization model for scheduling jobs at container terminals.

We showed that our model is applicable to straddle carriers, automated guided vehicles, stacking

cranes, and reefer workers. The generality of our model is advantageous in practice because it

allows to use the same model and optimization algorithms for several different scheduling problems.

Furthermore, we developed priority rule heuristics and a genetic algorithm to solve the proposed

problem. With a tailored instance generator, we generated several large sets of test instances for a
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sampling GA

Problem #schedules #schedules #generations population size

Straddle carrier 321 320 8 40

AGV 1903 2047 35 60

Reefer worker 5172 7524 63 120

Table 6: Average number of schedules computed within the time limit (1 s)

computational analysis. The experiments showed that the genetic algorithm leads to better results

than the priority rule methods. It appears to be well suited to solve test instances of realistic

size within very short computation times. This makes it applicable to online scheduling within a

terminal control system.

An important topic for future research is the integration of the optimization approach proposed

in this paper into a simulation model. Simulation models cover the behavior of the equipment types

as well as the control and optimization strategies. Providing a dynamic environment, they allow

to capture the logistic processes in a realistic way. Simulation models have various applications

ranging from the assessment of equipment capacities and layout alternatives to tests of optimization

components. In particular, they provide a more realistic test bed for scheduling approaches than

an offline study like the one that was carried out in this paper. On container terminals, the typical

overall objectives are to maximize the productivity (i.e., the number of containers handled per

hour) and to minimize the ships’ times in port. Such objectives are not applicable to equipment

scheduling. Therefore, an objective like the minimization of lateness and setup times is often chosen

for scheduling. In order to analyze whether the scheduling objective really leads to good overall

productivity and short times in port, a simulation model is needed. In addition, simulation models

allow to examine various other points such as the impact of inaccurate estimates of processing times

or delays (and resulting updates of due dates or availability times) as well as the coordination of

different resource types. Thus, the scheduling approach proposed in this paper can only be fully

evaluated by integrating it into a simulation model. While the experiments presented here showed

that the GA produces good results in terms of the scheduling objective, the next step would

be to examine whether the scheduling objective leads to a good terminal productivity. Note,

however, that a simulation study always depends on the container terminal under consideration

since it captures the actual equipment and the design of the terminal control system. Therefore, a

simulation model cannot be used to evaluate a scheduling approach in a way that leads to general

results (i.e., results which hold for any terminal configuration). The scheduling model suggested

in this paper has been successfully tested in a simulation study for a real-world container terminal

(for reasons of confidence, however, details on that study cannot be given).
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