
Published in Naval Research Logistics 49:433–448 (2002).

c© Wiley & Sons, doi:10.1002/nav.10029

A Self-Adapting Genetic Algorithm

for Project Scheduling under

Resource Constraints

Sönke Hartmann∗

Christian-Albrechts-Universität zu Kiel, Lehrstuhl für Produktion und Logistik, D-24098

Kiel, Germany. E-mail: hartmann@bwl.uni-kiel.de

∗supported by the Studienstiftung des deutschen Volkes

Abstract. This papers deals with the classical resource-constrained project scheduling prob-

lem (RCPSP). There, the activities of a project have to be scheduled subject to precedence

and resource constraints. The objective is to minimize the makespan of the project. We

propose a new heuristic called self-adapting genetic algorithm to solve the RCPSP. The

heuristic employs the well-known activity list representation and considers two different de-

coding procedures. An additional gene in the representation determines which of the two

decoding procedures is actually used to compute a schedule for an individual. This allows

the genetic algorithm to adapt itself to the problem instance actually solved. That is, the

genetic algorithm learns which of the alternative decoding procedures is the more successful

one for this instance. In other words, not only the solution for the problem, but also the

algorithm itself is subject to genetic optimization. Computational experiments show that

the mechanism of self-adaptation is capable to exploit the benefits of both decoding proce-

dures. Moreover, the tests show that the proposed heuristic is among the best ones currently

available for the RCPSP.

Keywords. Project Scheduling, Resource Constraints, Genetic Algorithm, Self-Adaptation,

Computational Evaluation.

1 Introduction

In this paper, we consider the resource-constrained project scheduling problem (RCPSP). In the

RCPSP, the activities of a project have to be scheduled such that the makespan of the project is

minimized. Thereby, technological precedence constraints have to be observed as well as limited

capacities of the renewable resources that are required to accomplish the activities. The RCPSP is

a classical and challenging optimization problem that has attracted many researchers; for overviews

see Brucker et al. [6], Kolisch and Hartmann [20], and Özdamar and Ulusoy [26]. Moreover, it is

important for practitioners as well with various applications ranging from project management

software to control systems for flexible manufacturing systems. An important task in project

management is to schedule the project, i.e., to assign start times to the activities. The objective

and constraints make this an NP-hard optimization problem (see Blazewicz et al. [3]). Hence, for

large projects, it is advisable to make use of heuristic scheduling algorithms.

In a recent paper, we proposed a genetic algorithm (GA) for the RCPSP (see Hartmann [11]).

That GA makes use of the so-called activity list representation. In several computational exper-

iments, it was shown that this GA outperformed GAs based on other representations. Thus, it

https://doi.org/10.1002/nav.10029


A Self-Adapting Genetic Algorithm for Project Scheduling under Resource Constraints 2

was pointed out that the choice of the problem representation is crucial for the success of a GA.

According a more recent study (cf. Hartmann and Kolisch [13]), the activity list based GA ranges

among best heuristics currently available for the RCPSP. In fact, for medium and large sized

project instances, it is the most promising one. This paper is a follow-up study that proposes a

new RCPSP heuristic which builds upon the activity list based GA of [11]. We now examine the

impact of the so-called decoding procedure which transforms the problem representation into a

solution (in our case, schedule). As we will see, there are two algorithms that can be employed as

decoding procedures. The idea is to leave the choice between them to the GA. Generally speaking,

we obtain a GA in which an algorithmic component (the decoding procedure) is selected by means

of evolution. The result is an extended GA paradigm which allows the GA to adapt itself. Hence,

we call it self-adapting GA.

The basic framework for the self-adapting GA was developed in Hartmann [12]. Another general

approach called adaptive GA was introduced by Derigs et al. [9] (but not yet applied to the RCPSP).

The latter considers different crossover, mutation, and selection operators. A mechanism based on

a so-called scoreboard evaluates the success of the alternative operators dynamically. The main

differences between this adaptive GA and our self-adapting GA are as follows: First, our self-

adapting GA applies the same genetic operators and survival-of-the-fittest strategy to both the

problem solution and the information related to self-adaptation (i.e., we do not have to employ a

separate mechanism like the scoreboard). Second, in our application to the RCPSP, we use self-

adaptation for selecting the decoding procedure rather than for the genetic operators (although,

as we will point out later on, our approach can deal with different genetic operators as well).

The remainder is organized as follows: We begin with a description of the RCPSP in Section 2.

Subsequently, the self-adapting GA approach is presented in Section 3. Section 4 then summarizes

the results of our computational investigation. We analyze the behavior of the self-adapting GA

and compare it to the plain activity list based GA without self-adaptation. Moreover, we compare

it to several project scheduling heuristics from the literature. The paper closes with a general

discussion of the proposed approach as well as a few remarks on research perspectives in Section

5.

2 The Resource-Constrained Project Scheduling Problem

The classical resource-constrained project scheduling problem (RCPSP) can be summarized as

follows. We consider a project which consists of J activities (jobs) labeled j = 1, . . . , J . The set of

activities is referred to as J = {1, . . . , J}. Due to technological requirements, there are precedence

relations between some of the jobs. These precedence relations are given by sets of immediate

predecessors Pj indicating that an activity j may not be started before all of its predecessors are

completed. Analogously, Sj is the set of the immediate successors of activity j. The precedence

relations can be represented by an activity-on-node network which is assumed to be acyclic. We

consider additional activities j = 0 representing the single source and j = J + 1 representing the

single sink activity of the network.

With the exception of the (dummy) source and (dummy) sink activity, each activity requires

certain amounts of (renewable) resources to be performed. The set of resources is referred to as K.

For each resource k ∈ K the per-period-availability is constant and given by Rk. The processing

time (duration) of an activity j is denoted as pj , its request for resource k is given by rjk. Once

started, an activity may not be interrupted. Without loss of generality, we assume that the dummy

source and the dummy sink activity have a duration of zero periods and no request for any resource.

The parameters are assumed to be nonnegative and integer valued. The objective is to deter-

mine a schedule with minimal makespan such that both the precedence and resource constraints

are fulfilled. A mathematical programming formulation for the RCPSP was given by Pritsker et

al. [30].



A Self-Adapting Genetic Algorithm for Project Scheduling under Resource Constraints 3

3 Self-Adapting Genetic Algorithm

3.1 Basic Scheme

Genetic algorithms (cf. Holland [15], Goldberg [10]) apply the principles of biological evolution to

solve optimization problems. They combine existing solutions in order to form new ones. Together

with a survival-of-the-fittest strategy, this leads to successively better solutions for the problem to

be solved.

Our GA framework starts with the computation of an initial population, i.e., the first genera-

tion, which is described in Subsection 3.3. The number of individuals in the population is referred

to as POP which is assumed to be an even integer. The GA then determines the fitness values of

the individuals of the initial population. After that, the population is randomly partitioned into

pairs of individuals. To each resulting pair of (parent) individuals, we apply the crossover operator

(see Subsection 3.4) to produce two new (child) individuals. Subsequently, we apply the mutation

operator (see Subsection 3.5) to the genotypes of the newly produced children. After computing

the fitness of each child individual, we add the children to the current population, leading to a

population size of 2 · POP . Then we apply the selection operator (see Subsection 3.6) to reduce

the population to its former size POP . Doing so, we obtain the next generation to which we again

apply the crossover operator and so on. This process is repeated for a prespecified number of

generations which is denoted as GEN or, alternatively, until a given CPU time limit is reached.

More formally, the GA scheme can be summarized as follows. POP denotes the current pop-

ulation (i.e., a set of individuals), and CHI is the set of children. G is the current generation

number. Note that exactly POP · GEN individuals (and thus schedules) are computed if a time

limit is not given.

G := 1;

generate initial population POP;

compute fitness for individuals I ∈ POP;

WHILE G < GEN AND time limit is not reached DO

BEGIN

G := G+ 1;

produce children CHI from POP by crossover;

apply mutation to children I ∈ CHI;

compute fitness for children I ∈ CHI;

POP := POP ∪ CHI;

reduce population POP by means of selection;

END.

3.2 Representation and Self-Adaptation

For many optimization problems, GAs do not operate directly on the solutions for the problems.

Instead, they make use of problem-specific representations of the solutions. The genetic opera-

tors modify the representation which is then transformed into a solution by means of a so-called

decoding procedure.

For the RCPSP, a solution is given by a schedule S = (s1, . . . , sJ) which assigns a start time

sj to every activity j. As outlined in Hartmann [11], such a solution can be represented within a

GA by an activity list λ = (j1, . . . , jJ). An activity list must be precedence feasible, that is, any

activity must occur in the list after all its predecessors. Formally, that is Pji ⊆ {0, j1, . . . , ji−1}
for i = 1, . . . , J . The activity list is transformed into a schedule by a decoding procedure which is

called serial schedule generation scheme (SGS). The serial SGS constructs schedules from activity

lists as follows: First, the dummy source activity is started at time 0. Then the activities are

scheduled in the order that is prescribed by the list (j1, . . . , jJ). Thereby, each activity is assigned



A Self-Adapting Genetic Algorithm for Project Scheduling under Resource Constraints 4

the earliest precedence and resource feasible start time. In fact, in Hartmann [11] it is shown that

the activity list representation (together with the serial SGS as decoding procedure) leads to better

results than other representations for the RCPSP.

In the context of priority rule based heuristics, another scheduling algorithm for the RCPSP, the

so-called parallel SGS, has been employed (cf. Kolisch [18]). It works as follows: Having scheduled

the dummy sink activity at time 0, the parallel SGS computes a so-called decision point which

is the time at which an activity to be scheduled is started. This decision point is determined by

earliest finish time of the activities currently in process. For each decision point, the set of eligible

activities is computed as the set of those activities that can be feasibly started at the decision

point. The eligible activities are selected successively and started until none are left. Then the

next decision point and a related set of eligible activities are computed. This is repeated until all

activities are feasibly scheduled.

To the best of our knowledge, all metaheuristics in the RCPSP literature that employ the

activity list representation also make use of the serial SGS as decoding procedure (see Baar et

al. [1], Boctor [4], Bouleimen and Lecocq [5], Hartmann [11], and Pinson et al. [29]). Usually,

no reason for the selection of the serial SGS is given—the serial SGS appears to be the “natural

choice.”

We propose to use not only the serial but also the parallel SGS as decoding procedure for the

activity list representation. In fact, the parallel SGS can easily be applied to activity lists: In each

step, we simply choose that activity from the eligible set that has the lowest index in the activity

list.

Now we have two possible decoding procedures for the activity list representation of the RCPSP.

This leads us to the question which of them should be used. In fact, there is no general answer

to this question. This is due to the differences between the serial and the parallel SGS: Whereas

the serial SGS constructs so-called active schedules, the parallel one constructs so-called non-delay

schedules (cf. Sprecher et al. [34]). The set of the non-delay schedules is a (in most cases proper)

subset of the set of the active schedules. While the set of the active schedules always contains

an optimal schedule, this does not hold for the set of the non-delay schedules. Consequently, the

parallel SGS may miss an optimal schedule. On the other hand, it produces schedules of good

average quality because it tends to utilize the resources as early as possible, leading to compact

schedules.

This results in different behaviors of the SGS in computational experiments (cf., e.g., Kolisch

[18] and Hartmann and Kolisch [13]): On instances with many activities and/or scarce resource

capacities, the parallel SGS performs better than the serial one. Moreover, if long computation

times are allowed (i.e., if many schedules can be computed), the serial SGS leads to better results

than the parallel one. These observations can be explained as follows: Many activities and scarce

resources imply larger search spaces, where the focus on compact, but often only suboptimal non-

delay schedules is a promising heuristic strategy. Longer computation times may allow to find an

optimal or a near optimal solution, which is typically only possible if the serial SGS is used.

However, it is usually impossible to predict which of the SGS will perform better for an arbitrary

instance of the RCPSP. The idea is now to allow both SGS to be employed as decoding procedures

within our GA. To do so, we define the genotype as follows: An individual I = (λ, SGS) consists

of an activity list λ and an indicator

SGS =

{
1, if activity list λ is to be decoded by the serial SGS

0, if activity list λ is to be decoded by the parallel SGS.

For a given individual, we compute a schedule using the SGS specified in the genotype. The fitness

of the individual is defined as the makespan of the schedule. That is, a lower fitness implies a

better individual (and thus a higher chance to survive).

The extended representation proposed here includes an additional gene that determines the

SGS type to be used as decoding procedure for the related activity list. As with all genes in GAs,

also this one is subject to the genetic operators crossover, mutation, and selection. Therefore,



A Self-Adapting Genetic Algorithm for Project Scheduling under Resource Constraints 5

the SGS type leading to better results will survive while the other one will probably die over the

generations. Thus the mechanism of evolution decides for the specific instance currently to be

solved which decoding procedure is the more promising one. This enables the GA to adapt itself

dynamically to each instance, leading to what we call a self-adapting GA.

3.3 Initial Population

Next, we have to define how to determine an initial population containing POP individuals of the

genotype introduced above. We will proceed in two steps. First, we will consider the construction

of an activity list. Second, we will describe the selection of the decoding procedure to be used, i.e.,

one of the two SGS.

An activity list is constructed by a modified priority rule based sampling heuristic (cf. Kolisch

[18]). The next activity for the list is successively chosen from those unscheduled activities the

predecessors of which have already been selected for the list. This way, we obtain a precedence

feasible activity list. The decision which activity is chosen next is made on the basis of one of two

well-known priority rules. We first select the priority rule; either the LFT (latest finish time) or

the LST (latest start time) rule is chosen with a probability of 0.5 each. From the resulting priority

values of the activities, we derive regret based biased selection probabilities that are used to select

the next activity (for details on the priority rules and the regret based biased sampling approach,

we refer to Kolisch [18]). Using two good priority rules and a randomized activity selection method

leads to a diversified initial population of good activity lists.

Next, we have to choose an SGS in order to make the current activity list a complete genotype.

Of course, both SGS must appear in the population because we want the genetic algorithm to

decide which of them is more promising. We examined the following three alternative approaches:

(a) The most straightforward method is to select each of the SGS types with a probability of

p = 0.5.

(b) The following idea was designed to lead to a good initial distribution of the SGS types with re-

spect to the project actually to be scheduled. We have discussed above that, roughly speaking,

the serial SGS is more favorable for smaller projects. This motivated the following approach

where the probability to select the serial SGS is defined as pserial = α
J , where α is a constant.

Clearly, we set pparallel = 1 − pserial. This way, the more activities we have in a project, the

higher the probability to select the parallel SGS in the initial population.

(c) Similarly, we know that the parallel SGS is superior in case of scarce resource capacities. A

formal measure for the scarceness is the resource strength RS (see Kolisch et al. [22]). A low

resource strength implies scarce capacities. Thus, we simply set pserial = RS. Again, we set

pparallel = 1− pserial. Obviously, a low resource strength leads to a low probability for selecting

the serial SGS (note that RS is between 0 and 1 by definition).

In computational experiments with a large number of test instances, these three approaches gave

similar results on the average. This indicates that the initial distribution is not crucial for the

evolution as long as both SGS obtain a sufficient fraction in the initial population. As none of the

methods was clearly superior, we selected the simplest approach (a).

3.4 Crossover

Let us assume that two individuals of the current population have been selected for crossover. We

have a mother individual M = (λM , SGSM ) and a father individual F = (λF , SGSF ). Now two

child individuals have to be constructed, a daughter D = (λD, SGSD) and a son S = (λS , SGSS).

We start with a definition of the daughter D. In a first step, we determine the daughter’s

activity list λD. Combining the parent’s activity lists, we have to make sure that each activity

appears exactly once in the daughter’s activity list. Therefore, we adapt a general crossover



A Self-Adapting Genetic Algorithm for Project Scheduling under Resource Constraints 6

technique presented by Reeves [31] for permutation based genotypes. Our approach also secures

that precedence feasibility is maintained. We perform a two-point crossover for which we draw two

random integers q1 and q2 with 1 ≤ q1 < q2 ≤ J . Now the daughter’s activity list λD is determined

by taking the activity list of the positions i = 1, . . . , q1 from the mother, that is,

jDi := jMi .

The positions i = q1+1, . . . , q2 are derived from the father. However, the activities already selected

may not be considered again. We obtain:

jDi := jFk where k is the lowest index such that jFk /∈ {jD1 , . . . , jDi−1}.

The remaining positions i = q2 + 1, . . . , J are again taken from the mother, that is,

jDi := jMk where k is the lowest index such that jMk /∈ {jD1 , . . . , jDi−1}.

As proven by Hartmann [11], this crossover strategy constructs precedence feasible offspring, given

that the parents’ activity lists were precedence feasible as well.

The second step determines the daughter’s decoding procedure. The daughter inherits the

information which SGS should be used from the mother, that is, we set

SGSD := SGSM .

The son individual is computed analogously. For the son’s activity list, the first and the third

part are taken from the father and the second one is taken from the mother. He inherits the gene

that determines his decoding procedure from the father.

3.5 Mutation

The following mutation operator is applied to each newly produced child individual. The mutation

operator modifies the genes of the genotype with a probability of pmutation.

First, we show how the mutation operator modifies the individual’s activity list. We move

through the activity list from left to right. Thereby, we apply a right shift to each activity with a

probability of pmutation. Consider a current position i ∈ {1, . . . , J − 1} in the activity list

λ = (j1, . . . , ji, . . . , jh, . . . , jJ).

Now activity ji can be shifted after some position h ∈ {i+ 1, . . . , J}, which leads to activity list

λ′ = (j1, . . . , ji−1, ji+1, . . . , jh, ji, jh+1, . . . , jJ).

That is, activity ji is right shifted within the activity list and inserted immediately after some

activity jh. Clearly, such a shift is executed only if the resulting activity list is still precedence

feasible.

Second, we consider the gene indicating the decoding procedure. Interpreting the gene as a

boolean indicator for the SGS to be used, we set SGS := ¬SGS with a probability of pmutation.

That is, by applying mutation, the serial SGS is replaced by the parallel one in the current indi-

vidual and vice versa.

On the basis of preliminary computational experiments, we selected a mutation probability of

pmutation = 0.05.

3.6 Construction of the next Generation

As described in Section 3.1, we employ a generational management in the self-adapting GA. After

the application of crossover and mutation, we add the newly produced children to the current



A Self-Adapting Genetic Algorithm for Project Scheduling under Resource Constraints 7

population. The next step now is to select the individuals that survive and make up the next

generation.

We have tested several variants of the selection operator which follow a survival-of-the-fittest

strategy. We considered the ranking method, the proportional selection as well as the tournament

selection (cf., e.g., Michalewicz [25]). In preliminary computational studies, we observed that the

ranking method gave better results than the other alternatives. This is in line with the findings of

our previous study (Hartmann [11]). Therefore, we fixed the selection component to the ranking

approach. The ranking method sorts the individuals with respect to their fitness values and selects

the POP best ones while the remaining ones are deleted from the population (ties are broken

arbitrarily).

3.7 Dealing with Clones

Crossover (together with mutation) may produce children that are copies of individuals that already

exist in the population. These identical individuals are called clones. Often, clones are considered

to be worth avoiding because computational effort is wasted by computing solutions (in our case,

schedules) that had been computed before. Moreover, clones reduce the genetic variety in the

population. On the other hand, one might argue that the occurence of clones means that more

copies of fit information are available for reproduction.

In the self-adapting GA, we analyzed the number of clones occuring during the evolution. In

case of small search spaces (i.e., test sets with small projects), we had at most 6% clones during

the evolution. The average fraction of clones was less than 2%. For large search spaces, we hardly

observed any clone. Hence, we decided not to include a specific mechanism to avoid clones. It

should be noted, however, that for very long computation times, which allow to explore a huge

number of individuals, avoiding clones can by promising.

3.8 Acceleration

We have implemented two methods to speed up the self-adapting GA. They are both based on the

relaxation of the resource constraints.

The first approach has similarly been used by Kolisch [17]. It can be summarized as follows:

We compute a lower bound on the makespan which is given by the earliest possible project end

that would be obtained from relaxing the resource constraints. If we have found a schedule with a

makespan equal to the lower bound, we have found an optimal solution and stop the GA.

The second method makes use of the worst upper bound Z on the makespan that occurs in

the current population. Proceeding from this upper bound Z, we determine the so-called latest

start time LSj for each activity j ∈ J . LSj reflects the latest time at which activity j must start

to allow the project to be completed in period Z when the resource constraints are relaxed. If,

while computing the schedule for a new child individual, an activity j is assigned a start time

sj ≥ LSj , we can stop the scheduling process for this individual and remove it from the population

immediately. Clearly, the latter situation would lead to a schedule with a makespan Z ′ ≥ Z. That

is, it would be removed from the population by means of the ranking selection anyway. By not

completely computing a schedule for some individual, we save computation time.

4 Computational Results

4.1 Test Design

In this section we present the results of the computational studies. The experiments have been

performed on a Pentium-based IBM-compatible personal computer with 133 MHz clock-pulse and

32 MB RAM. The self-adapting GA for the RCPSP has been coded in ANSI C, compiled with the

GNU C compiler, and tested under Linux.



A Self-Adapting Genetic Algorithm for Project Scheduling under Resource Constraints 8

We have performed experiments with two different designs. First, we have taken three standard

sets of RCPSP instances from the literature which were constructed by the project generator Pro-

Gen of Kolisch et al. [22]. These instance sets are available from the web-based project scheduling

problem library PSPLIB (cf. Kolisch and Sprecher [21]). The first two sets contain 480 instances

with 30 and 60 activities per project, respectively. The third one consists of 600 instances with

120 activities. The self-adapting GA computed 1000 schedules for each project (with parameter

settings POP = 40, GEN = 25) and, in an additional run, not more than 5000 schedules (with

POP = 90, GEN = 55). This test design allowed us to compare our results with those obtained

for several RCPSP heuristics from the literature which were tested for the evaluation study of

Hartmann and Kolisch [13]. In that study, also 1000 and 5000 schedules were computed by each

heuristic for each instance. This allows to evaluate the heuristics both in a short term and in a

medium term optimization. The authors of the heuristics tested their approaches themselves such

that they were able to adjust the parameters in order to obtain the best possible results. As the

computational effort for constructing one schedule can be assumed to be similar in all of the tested

heuristics, this test design should allow for a fair comparison.

The second experimental design uses the well-known instance set assembled by Patterson [28].

It contains 110 RCPSP instances with up to 51 activities. This instance set enabled us to compare

the self-adapting GA with some heuristics for which no results for the ProGen set were available.

We report the results of the respective heuristics given in the literature by the authors of the

approaches. Here, however, the number of schedules computed for each instance was not equal

(and the results were obtained on different computers and with different computation times). As

a basis for the comparison, we therefore selected a time limit of 5 seconds per instance for the

self-adapting GA.

4.2 Comparison with other Heuristics for the RCPSP

The results of our experimental study on the ProGen instance sets are summarized in Tables 1–

3. They compare the self-adapting GA with several RCPSP heuristics from the literature. The

metaheuristics considered here are the schedule scheme based tabu search method of Baar et al. [1],

the activity list based simulated annealing approach of Bouleimen and Lecocq [5], the three GAs

of Hartmann [11] based on different representations, and the problem space based GA of Leon

and Ramamoorthy [24]. The tested priority rule based sampling methods include the adaptive

procedure of Kolisch and Drexl [19], the latest finish time (LFT) rule based method of Kolisch

[18], and the adaptive approach of Schirmer [33]. The LFT based sampling method was tested

separately with the serial and the parallel SGS.

Table 1 gives the average percentage deviations from the optimal makespan for the ProGen

instance set with 30 activities in a project obtained from the evaluation of 1000 and 5000 schedules,

respectively. As for the ProGen instance sets with 60 and 120 activities per project some of the

optimal solutions are not known, we measured for these sets the average percentage deviation

from a lower bound. As lower bound, we chose the critical path based lower bound (cf. Stinson

et al. [35]). As this bound can be easily computed, this allows other researchers to compare their

results with those reported here. The lower bound based results for the instances with 60 and

120 activities can be found in Tables 2 and 3, respectively. In each table, the heuristics are sorted

according to descending performance with respect to 5000 iterations.

For the self-adapting GA, Table 4 additionally displays the average percentage deviation from

the best lower bounds currently known. The results show that the solution gap is rather small. The

underlying lower bounds have been computed by Brucker and Knust [7], Heilmann and Schwindt

[14] as well as Klein and Scholl [16]. The bounds are frequently updated in the library PSPLIB

of Kolisch and Sprecher [21] (the results of Table 4 are based on the bounds reported there in

October 2000).

Finally, the results for the classical Patterson instances are provided in Table 5. In addition to

the self-adapting GA, it includes the two-phase heuristic of Bell and Han [2], the extended random



A Self-Adapting Genetic Algorithm for Project Scheduling under Resource Constraints 9

Iterations

Algorithm reference 1000 5000

self-adapting GA (new) 0.38 0.22

simulated annealing Bouleimen, Lecocq [5] 0.38 0.23

activity list GA Hartmann [11] 0.54 0.25

adaptive sampling Schirmer [33] 0.65 0.44

tabu search Baar et al. [1] 0.86 0.44

adaptive sampling Kolisch, Drexl [19] 0.74 0.52

serial sampling (LFT) Kolisch [18] 0.83 0.53

random key GA Hartmann [11] 1.03 0.56

priority rule GA Hartmann [11] 1.38 1.12

parallel sampling (LFT) Kolisch [18] 1.40 1.29

problem space GA Leon, Ramamoorthy [24] 2.08 1.59

Table 1: Average deviations (%) from optimal makespan — ProGen set J = 30

Iterations

Algorithm reference 1000 5000

self-adapting GA (new) 12.21 11.70

activity list GA Hartmann [11] 12.68 11.89

simulated annealing Bouleimen, Lecocq [5] 12.75 11.90

adaptive sampling Schirmer [33] 12.94 12.59

priority rule GA Hartmann [11] 13.30 12.74

adaptive sampling Kolisch, Drexl [19] 13.51 13.06

parallel sampling (LFT) Kolisch [18] 13.59 13.23

random key GA Hartmann [11] 14.68 13.32

tabu search Baar et al. [1] 13.80 13.48

problem space GA Leon, Ramamoorthy [24] 14.33 13.49

serial sampling (LFT) Kolisch [18] 13.96 13.53

Table 2: Average deviations (%) from critical path lower bound — ProGen set J = 60

Iterations

Algorithm reference 1000 5000

self-adapting GA (new) 37.19 35.39

activity list GA Hartmann [11] 39.37 36.74

simulated annealing Bouleimen, Lecocq [5] 42.81 37.68

priority rule GA Hartmann [11] 39.93 38.49

adaptive sampling Schirmer [33] 39.85 38.70

parallel sampling (LFT) Kolisch [18] 39.60 38.75

adaptive sampling Kolisch, Drexl [19] 41.37 40.45

problem space GA Leon, Ramamoorthy [24] 42.91 40.69

serial sampling (LFT) Kolisch [18] 42.84 41.84

random key GA Hartmann [11] 45.82 42.25

Table 3: Average deviations (%) from critical path lower bound — ProGen set J = 120



A Self-Adapting Genetic Algorithm for Project Scheduling under Resource Constraints 10

Iterations

Algorithm ProGen set 1000 5000

self-adapting GA J = 60 3.26 2.88

J = 120 9.69 8.33

Table 4: Average deviations (%) from best lower bound currently known

Algorithm reference average dev. optimal CPU-sec

self-adapting GA (new) 0.00% 100.0% 5.0a

GA Hartmann [11] 0.00% 100.0% 5.0a

simulated annealing Cho, Kim [8] 0.14% 93.6% 18.4b

simulated annealing Lee, Kim [23] 0.57% 82.7% 17.0b

problem space GA Leon, Ramamoorthy [24] 0.74% 75.5% 7.5c

LCBA Özdamar, Ulusoy [27] 1.14% 63.6% 0–25d

local search Sampson, Weiss [32] 1.98% 55.5% 10.2b

tabu search Thomas, Salhi [36] 2.30% 46.4% 218.7e

two-phase method Bell, Han [2] 2.60% 44.5% 28.4f

amaximal CPU-time on a Pentium 133 MHz
baverage CPU-time on a Pentium 60 MHz
caverage CPU-time on an IBM RS 6000
dCPU-time range on an IBM PC 486
eaverage CPU-time on a Sun Sparc Station 10
faverage CPU-time on a Macintosh plus

Table 5: Comparison of heuristics — Patterson instance set

key based simulating annealing method of Cho and Kim [8], the activity list based GA of Hartmann

[11], the random key based simulating annealing method of Lee and Kim [23], the problem space

based GA of Leon and Ramamoorthy [24], the local constraint based analysis (LCBA) approach

of Özdamar and Ulusoy [27], the local search procedure of Sampson and Weiss [32], and the tabu

search method of Thomas and Salhi [36]. We give the average percentage deviation from the optimal

makespan, the percentage of instances for which an optimal schedule was found, and information

about the computation time and the computer that was used for testing. The procedures are

sorted according to increasing deviation from the optimum.

The results show that the new self-adapting algorithm leads to the best results on all instance

sets, outperforming several heuristics from the literature. This makes it the most promising heuris-

tic to solve the RCPSP. For all instances of the Patterson instance set, an optimal solution is found

within at most 5 seconds of CPU time (this also holds for the activity list based GA of Hartmann

[11]).

Observe that metaheuristics typically give better results than priority rule based methods.

This is due to the fact that metaheuristics usually exploit knowledge from one or more previously

examined solutions whereas priority rule based procedures generate each solution independently.

It should be emphasized, however, that using a metaheuristic strategy alone does not guarantee a

good performance. This can be seen from the different results of the tested GA approaches.

Let us now return to the difference in the behavior of the two SGS that motivated the definition

of the genotype of the self-adapting GA. Consider the sampling method based on the LFT priority

rule. It was tested in two variants, that is, separately with the serial and the parallel SGS. As

the only difference lies in the SGS, the computational results show the impact of the choice of the



A Self-Adapting Genetic Algorithm for Project Scheduling under Resource Constraints 11

Iterations

test set 1000 5000

J = 30 0.30 1.40

J = 60 0.57 2.52

J = 120 3.13 14.05

Table 6: Average computation times of the self-adapting GA (sec)

Generation 1 2 5 10 15 20 25 30 35 40 45 50

RS = 0.2 50 30 18 18 19 20 20 20 21 21 21 21

RS = 0.5 50 39 35 36 36 34 34 35 36 37 38 39

RS = 0.7 50 44 56 64 67 67 67 67 67 67 67 67

Table 7: Average fraction (%) of the serial SGS over the generations (J = 60)

SGS. On the average, the serial SGS performs better on the ProGen set with 30 activities while

the parallel SGS becomes superior on the set with 120 activities. This demonstrates that instance

characteristics influence the performance. These results indicate that it is a promising approach

to include both SGS into a GA and let the genetic operators select the more successful one—as

done in our self-adapting GA.

4.3 Computation Times

Let us now take a brief look at the computation times. Table 6 lists the average computation

times for the three ProGen sets of test instances, both for constructing 1000 and 5000 schedules.

Recall that the times were obtained on a Pentium-based computer with 133 MHz. (Note that

the design of the set with J = 120 is different from the set with J = 60. Therefore, the average

computation times for the set with J = 120 are not approximately twice as long as those for the

set with J = 60.)

4.4 Behavior of the Self-Adapting Genetic Algorithm

We will now examine the mechanism of self-adaptation in more detail. Our goal is to study what

factors have an impact on the selection of the SGS in the artificial evolution.

We begin with a closer look at the distribution of the SGS in the population. Considering the

ProGen test set with J = 60, Table 7 displays the average percentage of the serial SGS in the

first two and then in every fifth generation. Thereby, we distinguish three different levels of the

resource strength RS. This parameter measures the availability of the resources. A low resource

strength (i.e., a value close to 0) implies that the resource capacities in those project instances are

scarce.

According to Table 7, scarce resources lead to a higher fraction of the parallel SGS in the

population. As already pointed out above, scarce resources make the problem harder to solve. In

such a situation, the parallel SGS which constructs non-delay schedules yields better results. Hence,

the resource strength is a problem parameter that influences the performance of the two SGS. As

the GA lets the best individuals survive, we can state that the mechanism of self-adaptation is

capable of detecting the more promising decoding procedure for some project instance dynamically.

Moreover, Table 7 indicates that the distribution of the SGS in the population changes over

the generations. For all considered levels of the resource strength RS, the percentage of the serial

SGS in the initial generation is approximately 50% by construction. Afterwards, the fraction of the



A Self-Adapting Genetic Algorithm for Project Scheduling under Resource Constraints 12

SGS RS = 0.2 RS = 0.5 RS = 0.7 overall

serial 24% 58% 67% 49%

parallel 76% 42% 33% 51%

Table 8: SGS in the best solution found w.r.t. resource strength (J = 60)

serial SGS decreases over the first generations and then increases again. Clearly, the GA always

selects the more successful SGS. This shows that the parallel SGS is useful at an early stage of the

search because it is well suited for quickly finding schedules of good average quality. In contrast,

the serial SGS is the better choice for getting closer to the optimum. Thus, the advantage of the

parallel SGS is exploited in the beginning of the evolution while using the serial SGS pays in a

later phase.

So far, we have examined how often the two SGS types occur in the population. Next, we

study how often the SGS types are contained in the best solution found for each project instance.

Considering again the instance set with J = 60, Table 8 shows the distribution of the SGS among

the best solutions found. On the average, approximately half of the best solutions contain the

serial SGS while the other half contain the parallel SGS. Again, however, the resource strength

RS of a project instance has an impact on the SGS selection. Table 8 shows that in case of scarce

resources (i.e., a low resource strength), the parallel SGS leads to more best solutions than the

serial one. In case of more resource capacities, the best solutions contain the serial SGS more often

than the parallel one.

Summing up, the mechanism of self-adaptation is capable of exploiting the benefits of both SGS

during the genetic search. In particular, it is able to adapt the selection of the decoding procedure

to the resource scarceness of a project.

5 Conclusions

In this paper, we have presented a new genetic algorithm based heuristic for the classical resource-

constrained project scheduling problem. The computational experiments on a large set of standard

test instances have shown that the proposed heuristic leads to better results than several heuristics

from the literature.

But we have not only obtained a promising heuristic for the RCPSP. The proposed self-adapting

GA can be viewed as a powerful and general framework to tackle difficult optimization problems.

When designing a classical GA for some optimization problem, one would do a lot of experiments

using test instances in order to find the best configuration of the GA. However, this might lead to

a heuristic that is only suboptimal:

• The instances of an optimization problem are often heterogenous in the sense that for some

problem characteristics one GA component performs best but for other problem character-

istics another variant is better. This would make the choice of a fixed GA variant as the

overall best questionable.

• It is not a priori clear which set of test problems can be viewed as representative for the

real-world application of the GA after its design is completed. Clearly, different test sets

may favor different GA variants. In particular, if one has optimized a GA for some test set,

this GA is not necessarily a good heuristic for other (e.g., real-world) instances.

• Often, one has many degrees of freedom when designing a GA. There may be too many com-

binations of components and parameter settings to allow for a systematic test to determine

the best GA variant.



A Self-Adapting Genetic Algorithm for Project Scheduling under Resource Constraints 13

• Some component might be better suited for longer computation times whereas an alternative

one is superior for short-term optimization.

• Some component may perform well in the first generations of the GA (which is usually

characterized by a rough search not yet close to the optimum) while an alternative one is

favorable for the later generations.

These disadvantages associated with the design process of a classical GA are avoided in our self-

adapting GA. We suggest to let the GA decide which component or parameter setting is promising.

In this paper, we have demonstrated the benefit of self-adaptation for the choice among alternative

decoding procedures. But it should be emphasized that self-adaptation can also deal with, e.g.,

alternative crossover strategies. One simply has to integrate all promising components that can be

used within the GA. The evolution can make use of additional genes in order to decide which of

them are the best. That is, the evolution leads to a good solution for the problem and to a good

algorithm to solve the problem at the same time. In other words, the best algorithmic variant is

determined dynamically for the problem instance actually solved. Future research in this direction

appears to be promising, and it seems to be worthwhile to develop self-adapting GAs for other

combinatorial optimization problems as well.

Acknowledgements. I would like to thank Andreas Drexl (University of Kiel) for his continuous

support as well as Rainer Kolisch (University of Darmstadt) for the inspiring discussions.

References
[1] T. Baar, P. Brucker, and S. Knust. Tabu-search

algorithms and lower bounds for the resource-
constrained project scheduling problem. In Voss
et al. [37], pages 1–8.

[2] C. E. Bell and J. Han. A new heuristic solution
method in resource-constrained project scheduling.
Naval Research Logistics, 38:315–331, 1991.

[3] J. Blazewicz, J. K. Lenstra, and A. H. G. Rin-
nooy Kan. Scheduling subject to resource con-
straints: Classification and complexity. Discrete
Applied Mathematics, 5:11–24, 1983.

[4] F. F. Boctor. An adaptation of the simulated an-
nealing algorithm for solving resource-constrained
project scheduling problems. International Journal
of Production Research, 34:2335–2351, 1996.

[5] K. Bouleimen and H. Lecocq. A new efficient
simulated annealing algorithm for the resource-
constrained project scheduling problem. Technical
report, Université de Liège, Belgium, 1998.

[6] P. Brucker, A. Drexl, R. Möhring, K. Neumann, and
E. Pesch. Resource-constrained project scheduling:
Notation, classification, models, and methods. Eu-
ropean Journal of Operational Research, 112:3–41,
1999.

[7] P. Brucker and S. Knust. A linear programming and
constraint propagation-based lower bound for the
RCPSP. Technical report, Universität Osnabrück,
Germany, 1998.

[8] J. H. Cho and Y. D. Kim. A simulated annealing
algorithm for resource-constrained project schedul-
ing problems. Journal of the Operational Research
Society, 48:736–744, 1997.

[9] U. Derigs, M. Kabath, and M. Zils. Adaptive ge-
netic algorithms: A methodology for dynamic auto-
configuration of genetic search algorithms. In Voss
et al. [37], pages 231–248.

[10] D. E. Goldberg. Genetic algorithms in search, op-
timization, and machine learning. Addison-Wesley,
Reading, Massachusetts, 1989.

[11] S. Hartmann. A competitive genetic algorithm for
resource-constrained project scheduling. Naval Re-
search Logistics, 45:733–750, 1998.

[12] S. Hartmann. Project scheduling under limited re-
sources: Models, methods, and applications. Num-
ber 478 in Lecture Notes in Economics and Mathe-
matical Systems. Springer, Berlin, Germany, 1999.

[13] S. Hartmann and R. Kolisch. Experimental evalua-
tion of state-of-the-art heuristics for the resource-
constrained project scheduling problem. Euro-
pean Journal of Operational Research, 127:394–407,
2000.

[14] R. Heilmann and C. Schwindt. Lower bounds for
RCPSP/max. Technical Report WIOR-511, Uni-
versität Karlsruhe, Germany, 1997.

[15] H. J. Holland. Adaptation in natural and artificial
systems. University of Michigan Press, Ann Arbor,
1975.

[16] R. Klein and A. Scholl. Computing lower bounds
by destructive improvement — An application to
resource-constrained project scheduling. Euro-
pean Journal of Operational Research, 112:322–346,
1999.

[17] R. Kolisch. Project scheduling under resource con-
straints – Efficient heuristics for several problem
classes. Physica, Heidelberg, Germany, 1995.



A Self-Adapting Genetic Algorithm for Project Scheduling under Resource Constraints 14

[18] R. Kolisch. Serial and parallel resource-constrained
project scheduling methods revisited: Theory and
computation. European Journal of Operational Re-
search, 90:320–333, 1996.

[19] R. Kolisch and A. Drexl. Adaptive search for solving
hard project scheduling problems. Naval Research
Logistics, 43:23–40, 1996.

[20] R. Kolisch and S. Hartmann. Heuristic algorithms
for solving the resource-constrained project schedul-
ing problem: Classification and computational anal-
ysis. In J. Weglarz, editor, Project scheduling:
Recent models, algorithms and applications, pages
147–178. Kluwer Academic Publishers, 1999.

[21] R. Kolisch and A. Sprecher. PSPLIB – a project
scheduling problem library. European Journal of
Operational Research, 96:205–216, 1996.

[22] R. Kolisch, A. Sprecher, and A. Drexl. Characteri-
zation and generation of a general class of resource-
constrained project scheduling problems. Manage-
ment Science, 41:1693–1703, 1995.

[23] J.-K. Lee and Y.-D. Kim. Search heuristics for
resource-constrained project scheduling. Journal of
the Operational Research Society, 47:678–689, 1996.

[24] V. J. Leon and B. Ramamoorthy. Strength and
adaptability of problem-space based neighborhoods
for resource-constrained scheduling. OR Spektrum,
17:173–182, 1995.

[25] Z. Michalewicz. Heuristic methods for evolution-
ary computation techniques. Journal of Heuristics,
1:177–206, 1995.

[26] L. Özdamar and G. Ulusoy. A survey on the
resource-constrained project scheduling problem.
IIE Transactions, 27:574–586, 1995.

[27] L. Özdamar and G. Ulusoy. An iterative local
constraint based analysis for solving the resource-
constrained project scheduling problem. Journal of
Operations Management, 14:193–208, 1996.

[28] J. H. Patterson. A comparison of exact ap-
proaches for solving the multiple constrained re-
source, project scheduling problem. Management
Science, 30:854–867, 1984.

[29] E. Pinson, C. Prins, and F. Rullier. Using tabu
search for solving the resource-constrained project
scheduling problem. In Proceedings of the fourth
international workshop on project management and
scheduling, pages 102–106. Leuven, Belgium, 1994.

[30] A. A. B. Pritsker, L. J. Watters, and P. M. Wolfe.
Multiproject scheduling with limited resources: A
zero-one programming approach. Management Sci-
ence, 16:93–107, 1969.

[31] C. R. Reeves. Genetic algorithms and combinatorial
optimization. In V. J. Rayward-Smith, editor, Ap-
plications of modern heuristic methods, pages 111–
125. Alfred Waller Ltd., Henley-on-Thames, 1995.

[32] S. E. Sampson and E. N. Weiss. Local search
techniques for the generalized resource-constrained
project scheduling problem. Naval Research Logis-
tics, 40:665–675, 1993.

[33] A. Schirmer. Case-based reasoning and improved
adaptive search for project scheduling. Naval Re-
search Logistics, 47:201–222, 2000.

[34] A. Sprecher, R. Kolisch, and A. Drexl. Semi-active,
active and non-delay schedules for the resource-
constrained project scheduling problem. European
Journal of Operational Research, 80:94–102, 1995.

[35] J. P. Stinson, E. W. Davis, and B. M. Khu-
mawala. Multiple resource-constrained schedul-
ing using branch and bound. AIIE Transactions,
10:252–259, 1978.

[36] P. R. Thomas and S. Salhi. A tabu search ap-
proach for the resource constrained project schedul-
ing problem. Journal of Heuristics, 4:123–139,
1998.

[37] S. Voss, S. Martello, I. Osman, and C. Roucairol,
editors. Meta-heuristics: Advances and trends in lo-
cal search paradigms for optimization. Kluwer Aca-
demic Publishers, 1999.


	Introduction
	The Resource-Constrained Project Scheduling Problem
	Self-Adapting Genetic Algorithm
	Basic Scheme
	Representation and Self-Adaptation
	Initial Population
	Crossover
	Mutation
	Construction of the next Generation
	Dealing with Clones
	Acceleration

	Computational Results
	Test Design
	Comparison with other Heuristics for the RCPSP
	Computation Times
	Behavior of the Self-Adapting Genetic Algorithm

	Conclusions

