
Published in Annals of Operations Research 102:111-135 (2001).

c© Kluwer, doi:10.1023/A:1010902015091

Project Scheduling with Multiple Modes:

A Genetic Algorithm

Sönke Hartmann∗

Christian-Albrechts-Universität zu Kiel, Lehrstuhl für Produktion und Logistik, D-24098

Kiel, Germany. E-mail: hartmann@bwl.uni-kiel.de

∗supported by the Studienstiftung des deutschen Volkes

Abstract. In this paper we consider the resource-constrained project scheduling problem

with multiple execution modes for each activity and makespan minimization as objective.

We present a new genetic algorithm approach to solve this problem. The genetic encoding

is based on a precedence feasible list of activities and a mode assignment. After defining

the related crossover, mutation, and selection operators, we describe a local search extension

which is employed to improve the schedules found by the basic genetic algorithm. Finally,

we present the results of our thorough computational study. We determine the best among

several different variants of our genetic algorithm and compare it to four other heuristics

that have recently been proposed in the literature. The results that have been obtained

using a standard set of instances show that the new genetic algorithm outperforms the other

heuristic procedures with regard to a lower average deviation from the optimal makespan.

Keywords. Project Management and Scheduling, Multiple Modes, Genetic Algorithms,

Local Search, Computational Results.

1 Introduction

Within the classical resource-constrained project scheduling problem (RCPSP), the activities of

a project have to be scheduled such that the makespan of the project is minimized. Thereby,

technological precedence constraints have to be observed as well as limitations of the renewable

resources required to accomplish the activities. Once started, an activity may not be interrupted.

This problem has been extended to a more realistic model, the multi-mode resource-constrained

project scheduling problem (MRCPSP). Here, each activity can be performed in one out of several

modes (cf. Elmaghraby [8]). Each mode of an activity represents an alternative way of combin-

ing different levels of resource requirements with a related duration. Following Slowinski [24],

renewable, nonrenewable and doubly constrained resources are dinstinguished. While renewable

resources have a limited per-period availability such as manpower and machines, nonrenewable

resources are limited for the entire project, allowing to model, e.g., a budget for the project. Dou-

bly constrained resources are limited both for each period and for the whole project. However,

since they can simply be incorporated by enlarging the sets of the renewable and nonrenewable

resources, we do not consider them explicitly. The objective is to find a mode and a start time

for each activity such that the schedule is makespan minimal and feasible with respect to the

precedence and resource constraints.

The outlined problem arises within systems for production planning and scheduling as well as

project management software. However, as shown by Sprecher and Drexl [27], even the currently

https://doi.org/10.1023/A:1010902015091

Project Scheduling with Multiple Modes: A Genetic Algorithm 2

most powerful optimization procedures are unable to find optimal schedules for highly resource-

constrained projects with more than 20 activities and three modes per activity within reasonable

computation times. Hence, in practice heuristic algorithms to generate near-optimal schedules for

larger projects are of special interest.

Several heuristic procedures for solving the MRCPSP have been proposed in the literature:

Drexl and Grünewald [6] suggest a regret-based biased random sampling approach. Slowinski et

al. [25] describe a single-pass approach, a multi-pass approach, and a simulated annealing algo-

rithm. Kolisch and Drexl [17] present a local search procedure. Özdamar [23] proposes a genetic

algorithm based on a priority rule encoding. Bouleimen and Lecocq [5] suggest a simulated anneal-

ing heuristic. Sprecher and Drexl [27] develop a branch-and-bound procedure which is, according

to the results obtained by Hartmann and Drexl [11], the currently most powerful algorithm for

exactly solving the MRCPSP. Sprecher and Drexl [27] suggested to use it as a heuristic by im-

posing a time limit. Finally, Boctor [2, 3, 4] as well as Mori and Tseng [22] present heuristics for

multi-mode problems without nonrenewable resources.

This paper introduces a new genetic algorithm (GA) approach for solving the MRCPSP. The

stepping stone is the concept of an activity list representation successfully employed by Hartmann

[10] for the single-mode RCPSP. Extending this approach, we develop a genotype representation

which consists of a precedence feasible activity list and a mode assignment. The phenotype,

i.e., schedule, related to a genotype is generated using a serial scheduling scheme. The basic

GA is extended by two local search components. The first one supports the process of finding

nonrenewable resource feasible mode assignments while the second one systematically improves

the feasible schedules found by the GA. We test the GA on the basis of a standard set of project

instances. After analyzing the behaviour of our GA, we compare it to four heuristic approaches

proposed in the literature.

2 Problem Description: The MRCPSP

We consider a project which consists of J activities (jobs) labeled j = 1, . . . , J . Due to technological

requirements the activities are partially ordered, that is, there are precedence relations between

some of the jobs. These precedence relations are given by sets of immediate predecessors Pj
indicating that an activity j may not be started before all of its predecessors are completed.

The transitive closure of the precedence relations is given by sets of (not necessarily immediate)

predecessors Pj . The precedence relations can be represented by an activity-on-node network

which is assumed to be acyclic. We consider additional activities j = 0 representing the only

source and j = J + 1 representing the unique sink activity of the network.

With the exception of the (dummy) source and (dummy) sink activity, each activity requires

certain amounts of resources to be performed. The set of renewable resources is referred to as Kρ.
For each renewable resource k ∈ Kρ the per-period-availability is constant and given by Rρk. The

set of nonrenewable resources is denoted as Kν . For each nonrenewable resource k ∈ Kν the overall

availability for the entire project is given by Rνk.

Each activity can be performed in one of several different modes of accomplishment. A mode

represents a combination of different resources and/or levels of resource requests with a related

duration. Once an activity is started in one of its modes, it is not allowed to be interrupted, and

its mode may not be changed. Activity j may be executed in Mj modes given by the set Mj =

{1, . . . ,Mj}. The processing time or duration of job j being performed in mode m ∈ Mj is given

by pjm. Furthermore, activity j executed in mode m uses rρjmk units of renewable resource k each

period it is in process, where we assume without loss of generality rρjmk ≤ Rρk for each renewable

resource k ∈ Kρ. Note, otherwise activity j could not be performed in mode m. Moreover, it

consumes rνjmk units of nonrenewable resource r ∈ Kν . We assume that the dummy source and

the dummy sink activity have only one mode each with a duration of zero periods and no request

for any resource.

The objective is to minimize the makespan of the project. We assume the parameters to be

Project Scheduling with Multiple Modes: A Genetic Algorithm 3

nonnegative and integer valued. A mathematical programming formulation of this problem has

been given by Talbot [29].

3 A Genetic Algorithm

In this section we present a new genetic algorithm (GA) approach for the MRCPSP. Introduced by

Holland [13], GAs serve as a heuristic meta strategy to solve hard optimization problems. Following

the basic principles of biological evolution, they essentially recombine existing solutions to obtain

new ones. The goal is to successively produce better solutions by selecting the better ones of the

existing solutions more frequently for recombination. For an introduction into GAs, we refer to

Goldberg [9].

3.1 Basic Scheme

Before the GA itself is executed, we apply a preprocessing procedure which adapts the project data

in order to reduce the search space. After preprocessing, the GA starts by computing an initial

population, i.e., the first generation. The number of individuals in the population is denoted

as POP . We assume POP to be an even integer. Then it determines the fitness values of the

individuals of the initial population. After that, the population is randomly partitioned into pairs

of individuals. To each resulting pair of (parent) individuals, we apply the crossover operator to

produce two new (children) individuals. Subsequently, we apply the mutation operator to the

genotypes of the newly produced children. After computing the fitness of each child individual,

we add the children to the current population, leading to a population size of 2 · POP . Then

we apply the selection operator to reduce the population to its former size POP and obtain the

next generation to which we again apply the crossover operator. This process is repeated for a

prespecified number of generations which is denoted as GEN or, alternatively, until a given CPU

time limit is reached.

More formally, the GA scheme can be summarized as follows. POP denotes the current pop-

ulation (i.e., a set of individuals), and CHI is the set of children. G is the current generation

number.

execute preprocessing procedure;

G := 1;

generate initial population POP;

compute fitness for individuals I ∈ POP;

WHILE G < GEN AND time limit is not reached DO

BEGIN

G := G+ 1;

produce children CHI from POP by crossover;

apply mutation to children I ∈ CHI;

compute fitness for children I ∈ CHI;

POP := POP ∪ CHI;

reduce population POP by means of selection;

END.

Observe that exactly POP ·GEN individuals are computed (if a time limit is not given). Hence,

it is possible to specify in advance the number of schedules to be computed (because one individual

corresponds to one or—in a variant to be described later on—two schedules). Therefore, this

general GA scheme allows an easy comparison with other heuristics in computational experiments,

given that the computational effort for constructing one schedule is similar in the heuristics under

consideration.

Project Scheduling with Multiple Modes: A Genetic Algorithm 4

It should be mentioned that the overall scheme which adds children to the current population

and then reduces the population size by removing individuals has been used by Eiben et al. [7].

The parent selection mechanism which implies that each individual is selected exactly once for

mating and which leads to a doubled population size after offspring production has been used by

Hartmann [10].

In the following subsections, the components of the GA are described. Throughout this section,

we illustrate the definitions using the project example displayed in Figure 1.

0 7

2

1

4

3

6

5

Kρ = {1}; Rρ1 = 4

Kν = {2}; Rν2 = 15

j

pj1/rρj11/rνj12

pj2/rρj21/rνj22

0/0/0 0/0/0

3/2/5

4/1/1

2/3/6

4/3/2

2/4/2

3/2/2

2/3/6

2/4/4

3/3/1

3/1/7

4/2/1

6/1/1

�
�
���

@
@
@@R -

-

-

-

�
�
���

@
@
@@R

Figure 1: Project instance

3.2 Preprocessing

Before the execution of the GA itself, the project data is adapted by preprocessing in order to

reduce the search space. The reduction procedure has been introduced by Sprecher et al. [28] in

order to accelerate a branch-and-bound algorithm for the MRCPSP. We briefly summarize the

definitions and results: Sprecher et al. [28] define a mode to be non-executable if its execution

would violate the renewable or nonrenewable resource constraints in any schedule. A mode is

called inefficient if its duration is not shorter and its resource requests are not less than those of

another mode of the same activity. A nonrenewable resource is called redundant if the sum of

the maximal requests of the activities for this resource does not exceed its availability. Clearly,

redundant nonrenewable resources as well as non-executable and inefficient modes may be deleted

from the project data without affecting the optimal makespan.

As described by Sprecher et al. [28], there are interaction effects between the elimination of

modes and nonrenewable resources. For example, removing a nonrenewable resource may cause

inefficiency of a mode while deleting a mode may lead to redundancy of a nonrenewable resource.

Consequently, the project data is adapted as follows: First, all non-executable modes are deleted.

Second, all redundant nonrenewable resources and, subsequently, all inefficient modes are removed.

The second step is repeated until no redundant nonrenewable resources are left. The result of this

modification is a reduction of the number of feasible as well as infeasible solutions, that is, a smaller

search space.

Consider the project instance given in Figure 1. If activity 5 was performed in mode 2, the

whole project would require at least 17 units of the nonrenewable resource whereas only 15 units

are available. Hence, mode 2 of activity 5 is non-executable with respect to to the nonrenewable

resource and may therefore be deleted.

3.3 Definition of Individuals

As we are dealing with the multi-mode extension of the standard RCPSP, our genetic representation

has to reflect both the scheduling problem (which assigns start times to activities) and the mode

assignment problem (which assigns modes to activities). Our goal is to deal with both problems

simultaneously because of the interactions between them (e.g., there is no “good” mode assignment

Project Scheduling with Multiple Modes: A Genetic Algorithm 5

itself as long as we don’t know how the resulting processing times and resource requirements

influence possible start times and hence the makespan).

With this in mind, we represent an individual by a pair I = (λ, µ) of a precedence feasible

activity list λ = (j1, . . . , jJ) and a mode assignment µ. An activity list is precedence feasible if

any predecessor of an activity appears before this activity in the list, that is, Pji ⊆ {j1, . . . , ji−1}
for i = 1, . . . , J . A mode assignment µ is a mapping which assigns to each activity j ∈ {1, . . . , J}
one of its modes µ(j) ∈Mj . We will use the following alternative notation for the individuals:

I =

(
j1 · · · jJ

µ(j1) · · · µ(jJ)

)
.

Each genotype I = (µ, λ) is related to a uniquely determined schedule (phenotype) which is

obtained from fixing the modes according to the mode assignment µ and then applying the so-

called serial schedule generation scheme to activity list λ for the resulting single-mode problem.

That is, we first start the dummy source activity at time 0. Then we successively take the next

unscheduled activity from the list λ and schedule it at the earliest precedence and resource feasible

start time, using the mode specified by the mode assignment µ.

Clearly, the schedule related to an individual is feasible with respect to the precedence relations

and the renewable resource constraints, but not necessarily with respect to the nonrenewable

resource constraints. However, it is useful to include schedules that are infeasible with respect to

the nonrenewable resources into the search space because, as proven by Kolisch and Drexl [17],

already finding a feasible schedule is an NP-complete problem if at least two nonrenewable resources

are given. In other words, we cannot find a procedure which constructs a nonrenewable resource

feasible individual (e.g., for the initial population) in polynomial time. Therefore, the search for

nonrenewable resource feasible mode assignments and the search for near-optimal schedules are

done simultaneously by the GA.

3.4 Fitness Computation

The fitness of an individual I = (λ, µ) is computed as follows: Let Lνk(µ) denote the leftover

capacity of nonrenewable resource k ∈ Kν with respect to the mode assignment µ, that is,

Lνk(µ) = Rνk −
J∑
j=1

rνjµ(j)k.

A negative leftover capacity Lνk(µ) < 0 implies infeasibility of mode assignment µ with respect

to nonrenewable resource k. Let the number of nonrenewable resource units that exceed the

capacities be given by

Lν(µ) =
∑
k∈Kν

Lν
k
(µ)<0

|Lνk(µ)|.

We denote the makespan of a schedule related to an individual I as Cmax(I). Moreover, let T

be the upper bound on the project’s makespan that is given by the sum of the maximal durations

of the activities. Now we are ready to define the fitness of an individual I as

f(I) =

{
Cmax(I) if I is feasible with respect to the nonrewewable resources

T + Lν(µ) otherwise.

That is, the fitness of a feasible individual is given by the makespan of the related schedule. In-

feasibility with respect to the nonrenewable resource constraints is penalized in the fitness function

by adding the number of requested nonrenewable resource units that exceed the capacity. From

the definitions given above it is clear that a lower fitness of an individual implies a better quality

Project Scheduling with Multiple Modes: A Genetic Algorithm 6

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 t

1

2

3

4

Rρ1

-

6

2(2)
4(2)

6(1)

1(1)

3(1)
5(1)

Figure 2: Schedule of example individual IM

of the related schedule. In particular, a feasible individual always has a lower (i.e., better) fitness

than an infeasible one.

For illustration, we consider the project instance given in Figure 1 and the two example indi-

viduals

IM =

(
2 4 1 6 3 5

2 2 1 1 1 1

)
, IF =

(
1 3 2 5 4 6

1 2 1 1 2 2

)
. (1)

Clearly, the mode assignment of individual IM is feasible as 15 units of the single nonrenewable

resource are requested, that is, the capacity is not exceeded. Now we derive a schedule from

the genotype of IM which can be found in Figure 2, where j(m) stands for activity j being

performed in mode m. The fitness of IM is equal to the makespan of the schedule, that is, we

have f(IM) = 15. Individual IF induces a nonrenewable resource requirement of 19 units which

exceeds the availability by 4 units. Computing T = 22, we obtain a fitness value of f(IF) = 26.

3.5 Initial Population

Each individual of the initial population is computed by the following three steps which are repeated

until POP individuals are generated.

First, a mode assignment is generated by randomly selecting µ(j) ∈ Mj for activities j =

1, . . . , J .

Second, the mode assignment µ is checked for nonrenewable resource feasibility. If the capacity

of a nonrenewable resource would be exceeded, i.e., if Lν(µ) > 0, then the following simple local

search procedure which follows a first fit strategy tries to improve the current mode assignment:

We randomly select an activity j ∈ J with Mj > 1 and a mode mj ∈Mj with mj 6= µ(j), leading

to a new mode assignment µ′. If this new mode assignment is at least as good as the previous one,

that is, if Lν(µ′) ≤ Lν(µ), then we accept this new mode by setting µ := µ′, that is, µ(j) := mj .

This process is repeated until J consecutive unsuccessful trials to improve the mode assignment

(by reducing Lν(µ)) have been made or until the mode assignment is feasible (i.e., Lν(µ) = 0).

Recall that there is no algorithm which guarantees the construction of feasible mode assignment

in polynomial time, which is due to the NP-completeness of this problem.

Third, based on mode assignment µ, the priority rule based sampling method of Kolisch [15] for

the single-mode case is employed to construct a precedence feasible activity list λ. More precisely,

we (temporarily) fix the modes of the activities with respect to µ. Then, starting with the empty

activity list, we obtain a precedence feasible activity list by repeatedly selecting an activity from

the set of the eligible activities. The probability with which an activity is selected is derived from

the latest finish times which are derived by so-called backward recursion on the basis of the activity

durations given by the mode assignment.

Project Scheduling with Multiple Modes: A Genetic Algorithm 7

3.6 Crossover

For our problem specific representation, we cannot use any of the standard crossover and mutation

operators defined in the literature. Therefore, we introduce the following crossover approach which

considers the activity list concept, precedence feasibility, and the mode assignment.

We select two “parent” individuals for crossover, a mother IM = (λM , µM) and a father IF =

(λF , µF) with

IM =

(
jM1 · · · jMJ

µM (jM1) · · · µM (jMJ)

)
and

IF =

(
jF1 · · · jFJ

µF (jF1) · · · µF (jFJ)

)
.

Then we draw two random integers q1 and q2 with 1 ≤ q1, q2 ≤ J . Now two new individuals, a

daughter ID = (λD, µD) and a son IS = (λS , µS), are produced from the parents. We first consider

ID which is defined as follows: In the activity list λD of ID, the positions i = 1, . . . , q1 are defined

by the mother, that is, we set

jDi := jMi .

The partial activity list of positions i = q1 + 1, . . . , J in λD is derived from the father, but the

activities that have already been taken from the mother may not be considered again, that is,

jDi := jFk where k is the lowest index such that jFk /∈ {jD1 , . . . , jDi−1}.

Note that this definition ensures that the relative positions in the parents’ activity sequences

are preserved. Observe that the resulting job sequence is precedence feasible.

The modes of the activities on the positions i = 1, . . . , q2 in daughter ID are defined by the

mother’s mode assignment µM , that is, we have

µD(jDi) := µM (jDi).

The modes of the remaining jobs on the positions i = q2 + 1, . . . , J in ID are derived from the

father’s mode assignment µF :

µD(jDi) := µF (jDi).

The son IS of the parent individuals IM and IF is computed accordingly. However, the positions

1, . . . , q1 of the son’s activity list λS are taken from the father and the remaining positions are

determined by the mother. Analogously, the first part up to position q2 of the mode assignment

µS of IS is taken from µF while the second part is derived from µM .

These definitions are illustrated by the following example. We use again the project instance

of Figure 1 and the example parents of (1). Setting q1 = 3 and q2 = 4, we obtain

ID =

(
2 4 1 3 5 6

2 2 1 1 1 2

)
, IS =

(
1 3 2 4 6 5

1 2 1 2 1 1

)
. (2)

Consider the daughter ID. The first three positions of the activity list are equal to those of the

mother’s activity list. The order of the remaining activities is taken from IF . According to the

value of q2, the modes of the first four activities in the activity list of ID are determined by the

mother’s mode assignment while the last two activities get their modes from the father’s mode

assignment. Observe that, as we have q1 < q2 in this example, the fourth activity of the daughter’s

activity list, activity 3, is determined by the father’s activity list. The mode of activity 3, however,

is taken from the mother.

Project Scheduling with Multiple Modes: A Genetic Algorithm 8

3.7 Mutation

The representation-specific mutation operator included in our GA is applied to each newly gen-

erated child individual I = (λ, µ). It first modifies the related activity list λ: For all positions

i = 1, . . . , J − 1, activities ji and ji+1 are exchanged with a probability of pmutation, if the result

is an activity list which fulfills the precedence assumption. Note that this does not affect the

mode assignment, that is, all activities keep their modes even if their positions within the activity

list are changed. Next, the mutation operator modifies the mode assignment µ: Each position

i = 1, . . . , J is modified with probability pmutation. If some position i is to be modified, we reselect

µ(ji) by randomly drawing a mode out of Mji . Preliminary computational tests have shown that

pmutation = 0.05 is a good choice for the mutation rate.

While the first step may create partial activity sequences (i.e., gene combinations) that could

not have been procuced by the crossover operator, the second step may introduce a mode (i.e.,

gene) that did not occur in the current population.

3.8 Selection

We have considered several variants of the selection operator (see, e.g., Michalewicz [21]). All

of them follow a survival-of-the-fittest strategy. The ranking method sorts the individuals with

respect to their fitness values and selects the POP best ones while the remaining ones are deleted

from the population (ties are broken arbitrarily). The proportional selection derives fitness based

probabilities for the individuals in order to decide which individuals are selected for the next

generation. Finally, in the tournament selection, a number of individuals (in our case two or

three) compete for survival. These competitions, in which the least fit individual is removed from

the population, are repeated until POP individuals are left. Based on the results of preliminary

computational studies, we have chosen the ranking method as selection operator for our GA.

3.9 Extensions of the General Scheme

We close this section with a few remarks on extensions of the general GA scheme, namely the

island model and the repetition approach. The island model considers different islands on which

the evolution develops almost (but not totally) independently (cf. Kohlmorgen et al. [14]). That

is, the island model takes into account several separated populations instead of only one, and

an individual can only mate with others of the same population. The islands are connected by

migration, that is, an individual with a good fitness value can “swim to another island” and is then

part of another population. This is done in order to spread promising genes into other populations.

In the repetition approach, the execution of the GA is replicated, that is, it is restarted several

times on each problem instance. Then the overall best solution found is selected. Observe that

this is similar to the island model without migration because each replication corresponds to the

evolution on an independent island.

In our experiments, we observed that the island model and the repetition approach did not

improve the results in our tests when rather small computation times were allowed. Testing the

island model based GA and the standard GA both with the same time or schedule number limit

implies that the population size on each separate island becomes much smaller than that used in

the standard GA. A small population size leads to a small gene pool, which is a drawback in the

optimization process. Clearly, the same explanation holds for the repetition approach. However,

for substantially higher computation times, the two extensions slightly improved the results of the

standard GA scheme. Nevertheless, we will restrict ourselves to the standard GA scheme in the

remainder of this paper. The rather small standard project sets used in our tests made smaller

time limits more appropriate. As the standard GA scheme yields better results for smaller time

limits, it was considered to be sufficient. One should keep in mind, however, that the island model

and the repetition approach can be promising if higher computation times are allowed.

Project Scheduling with Multiple Modes: A Genetic Algorithm 9

1 2 3 4 5 6 7 8 9 10 11 12 13 t

1

2

3

4

Kρ
1

-

6

2(2)
4(2)

6(1)

1(2)
3(2)

5(1)

Figure 3: Improved schedule of example individual IM

4 Improving Schedules by Local Search

We will now introduce a local search method for the MRCPSP to improve the schedule related to an

individual. The approach is based on the definition of a multi-mode left shift which was originally

defined for a bounding rule in an exact algorithm (cf. Sprecher et al. [28]). A multi-mode left

shift of an activity j is an operation on a given schedule which reduces the finish time of activitity

j without changing the modes or finish times of the other activities and without violating the

constraints. Thereby, the mode of activity j may be changed. Two characteristics make the multi-

mode left shift a promising way to improve feasible schedules within our GA: First, multi-mode left

shifts consider start times and modes simultaneously. Second, they cannot deteriorate a current

feasible schedule, that is, the schedule remains feasible and its makespan cannot be increased.

In what follows, we discuss different approaches to incorporate multi-mode left shift improve-

ment into our GA. In each of these variants, the local search procedure is only applied to feasible

schedules.

4.1 Single Pass Improvement

We employ the local search procedure after transforming an individual I = (λ, µ) into a schedule. If

the schedule is feasible with respect to the nonrenewable resources, we try to improve it as follows:

For each activity j1, . . . , jJ , we check whether a multi-mode left shift can be performed. Thereby,

the modes of an activity ji are tested with respect to non-decreasing duration, that is, the mode

with the shortest duration is checked first. For each activity, the first feasible multi-mode left shift

found (if any) is applied to the schedule. Then we skip to the next activity in the activity list. The

result is a feasible schedule with a makespan equal to or lower than the makespan of the original

schedule. Now the fitness f(I) of individual I is set to be equal to the new makespan. We call it

a single pass procedure because each activity is considered only once for a multi-mode left shift.

For illustration, we consider again the project instance given in Figure 1. As already mentioned,

example individual IM of (1) is related to the schedule shown in Figure 2. This schedule is improved

by the procedure described above as follows: While activities 2 and 4 cannot be left shifted, we

can perform a multi-mode left shift on activity 1. Leaving activity 6 unchanged, we can now apply

a multi-mode left shift to activity 3. Finally, left shifting activity 5 yields a new makespan of

13 periods which is 2 periods shorter than the makespan of the original schedule. The resulting

schedule is displayed in Figure 3.

Note that the basic GA without local search leads to the computation of one schedule for each

individual, that is, we obtain POP ·GEN schedules for a project instance. Single pass local search

computes a second (and hopefully improved) schedule for an individual if the original schedule for

that individual was feasible. Consequently, the GA with the single pass extension constructs at

most 2 · POP ·GEN schedules for an instance.

Project Scheduling with Multiple Modes: A Genetic Algorithm 10

4.2 Multi Pass Improvement

As each activity is considered only once for a multi-mode left shift, a schedule derived by the above

single pass local search algorithm is not necessarily tight (a tight schedule is a schedule to which

no multi-mode left shift can be applied, cf. Sprecher et al. [28]). This is because a multi-mode left

shift of some activity ji might allow a multi-mode left shift of some activity jk with k < i that had

not been possible before. In the improved schedule of Figure 3, for example, a multi-mode left shift

of activity 2 is possible because the total consumption of the nonrenewable resource decreased due

to the multi-mode left shift of activity 1.

Consequently, we have tested a second variant of our local search extension which will be

called multi pass procedure: We repeatedly apply the above single pass improvement algorithm

until we have obtained a tight schedule. In contrast to the single pass algorithm, the multi pass

approach always leads to a local optimum as the resulting schedule cannot be further improved

using multi-mode left shifts.

Note that neither the single pass nor the multi pass approach can improve schedules for the

single-mode RCPSP found by the GA. This is because in the single-mode case the set of tight

schedules coincides with the set of the active ones (cf. Sprecher et al. [28]), and each schedule

computed by the serial schedule generation scheme is active.

4.3 Inheritance Beyond the Genetic Metaphor

So far, our local search improvement—either in the single pass or multi pass variant—can be viewed

as a second step of the genotype evaluation as it computes schedule-related fitness values. But we

can do more: Applying the local search approach to a schedule S related to an individual I, we

obtain an improved schedule S′. Now we can transform the new schedule S′ into an individual

I ′, that is, we can find an individual I ′ (genotype) which corresponds to the improved schedule

S′ (phenotype). Subsequently, we can replace individual I with the improved individual I ′ in the

current population. Clearly, the activity list of individual I ′ is given by the sequence of activities

ordered with respect to non-decreasing start times within schedule S′; the mode assignment is

straightforward.

It should be mentioned that the computational effort of transforming an improved schedule back

into a genotype is neglectable when compared to that of computing the original or the improved

schedule for an individual. That is, the GA with, e.g., single pass improvement in the two variants

with and without inheritance will show the same computation times.

For illustration, we consider again the project instance of Figure 1 and example individual IM

which is, after application of the single-pass improvement, related to the schedule of Figure 3. This

improved schedule leads to genotype

IM
′

=

(
1 2 4 6 3 5

2 2 2 1 2 1

)
.

Note that the genotype of IM
′

is not the only one that would lead to the schedule of Figure

3. Whereas each genotype is related to one unique schedule, a schedule may be related to more

than one genotype. The reason for this is essentially that activities may be performed in parallel,

whereas the genotypes prescribe a complete ordering of the activities due to the activity lists. For

example, the schedule of Figure 3 also corresponds to individual

IM
′′

=

(
2 1 4 3 6 5

2 2 2 2 1 1

)
.

In order to obtain a well-defined genotype for an improved schedule, we extend the transfor-

mation given above as follows: We sort the activities with respect to non-decreasing start times

and, as a tie breaker for activities with the same start time, with respect to non-decreasing activity

number.

Project Scheduling with Multiple Modes: A Genetic Algorithm 11

Considering evolution in biology, the improvement procedure which only affects the phenotype

(schedule) can be compared to individual or ontogenetic learning. The transformation of its results

into a new genotype, i.e., into hereditary information, corresponds to the possibility to inherit the

results of ontogenetic learning as proposed by Jean-Baptiste de Monet Chevalier de Lamarck (1744-

1829). Lamarck claimed that physical changes of an individual occur if and because they are useful,

and that these changes are passed on to its offspring. In nature, however, changes in the phenotype

of an individual usually do not affect its genotype.

5 Computational Results

5.1 Experimental Design

In this section we present the results of the computational studies concerning the genetic algorithm

introduced in the previous section. The experiments have been performed on a Pentium-based

IBM-compatible personal computer with 133 MHz clock-pulse and 32 MB RAM. The GA has

been coded in ANSI C, compiled with the GNU C compiler and tested under Linux.

We used a set of standard test problems systematically constructed by the project generator

ProGen which has been developed by Kolisch et al. [20]. They are available in the project scheduling

problem library PSPLIB from the University of Kiel. For detailed information the reader is referred

to Kolisch and Sprecher [19]. Some of these instances have been used by Bouleimen and Lecocq

[5], Kolisch and Drexl [17], and Özdamar [23] to evaluate their heuristics for the MRCPSP.

In our study, we have used the multi-mode problem sets containing instances with 10, 12, 14,

16, 18, 20, and 30 non-dummy activities. Each of the non-dummy activities may be performed in

one out of three modes. The duration of a mode varies between 1 and 10 periods. We have two

renewable and two nonrenewable resources. For each problem size, a set of instances was generated

by systematically varying four parameters, that is, the resource factor and the resource strength

of each resource category. The resource factor is a measure of the average portion of resources

requested per job. The resource strength reflects the scarceness of the resources.

For each project size, 640 instances were generated. Those instances for which no feasible

solution exists have not been considered. Hence, we have 536 instances with J = 10, 547 instances

with J = 12, 551 instances with J = 14, 550 instances with J = 16, 552 instances with J = 18, and

554 instances with J = 20. The set with 20 non-dummy activities currently is the hardest standard

set of multi-mode instances for which all optimal solutions are known, cf. Sprecher and Drexl [27].

For the set with 30 activities, not all optimal solutions are known until now, and for some instances

it is currently not known if a feasible solution exists. Consequently, we use all 640 instances with

30 activities in our tests. Note that we can measure the quality of a heuristic in terms of deviation

from the optimum if instance sets with up to 20 activities per project are considered. For the set

with J = 30, we measure the deviation from a lower bound on the makespan. This lower bound is

given by the makespan that results from starting each activity as early as possible in its shortest

mode while relaxing the (renewable and nonrenewable) resource constraints.

5.2 Configuration of the Algorithm

In the numerical investigation reported in this subsection we determined the best configuration

of our GA. We summarize the results only for the instance set with 20 non-dummy activities per

project as the results for the smaller projects are similar.

We start with the examination of the preprocessing procedure of Subsection 3.2. It eliminated

4.4% of the modes. Moreover, it was able to show that for 29% of the projects both nonrenewable

resources are redundant. Given the low computational effort for the preprocessing procedure, we

include it into our GA.

Next, we test the performance of the methodology to generate the initial population. Con-

sidering the instances with at least one nonrenewable resource left after preprocessing, only 53%

Project Scheduling with Multiple Modes: A Genetic Algorithm 12

Improvement inheritance POP = 30 60 90 120

— — 3.00% 1.83% 1.51% 1.79%

single-pass no 1.77% 1.21% 1.38% 1.66%

single-pass yes 2.42% 1.81% 1.69% 1.85%

multi-pass no 1.51% 1.32% 1.53% 1.71%

multi-pass yes 2.13% 1.66% 1.71% 1.75%

Table 1: Impact of local search improvement — 1 second, J = 20

of the mode assignments in the initial population are feasible if generated randomly. Adding the

local search procedure to modify the mode assignment, already 99 % of the mode assignments in

the initial population are nonrenewable resource feasible. This shows that our simple local search

procedure is well suited to contribute to a good initial population for the GA and should therefore

be incorporated. So far, we have shown that the preprocessing procedure and the local search

procedure for modifying the mode assignment are part of the best configuration of the GA.

Next, we determine the best GA variant concerning the local search schedule improvement. We

have five possible variants: The plain GA without schedule improvement, the GA with single pass

schedule improvement, the GA with single pass improvement including additional inheritance of the

local search results, the GA with multi-pass local search, and the GA with multi-pass improvement

including additional inheritance of the local search results.

As the local search types require a different computational effort for each individual, we chose

a time limit instead of a limited number of individuals as basis for the tests. Given a time limit,

only a restricted number of individuals can be computed. Therefore, the population size POP is

another important parameter to be determined. A large population size will lead to an evolution

over only a few generations and, as we will see, the relationship between population size and

number of generations has an impact on the solution quality. As we will also observe, there are

interdependencies between the choice of the GA variant and the population size. Consequently, the

following experiment simultaneously takes into account both the GA variant and the population

size. Given a time limit of one second, Table 1 summarizes the average percentage deviation from

the optimal makespan for the three GA variants and four population size settings.

There are several observations to be made: First, the best configuration makes use of the single

pass local search without additional inheritance and, with respect to the time limit of one second,

a population size of POP = 60.

Second, the GA with single pass improvement, but without inheritance is, independently from

the population size, always better than the plain GA. This confirms that the GA benefits from the

local search improvement. This approach, however, cannot be improved by using the multi pass

procedure or by additionally allowing inheritance of the local search results. The disappointing

results of the multi pass procedure are due to the fact that multiple application only leads to minor

improvements compared to the single pass application while it increases the computation time

needed to compute the schedule for one individual. Hence, within some time limit, less individuals

can be computed, and the minor effect of obtaining tight schedules is over-consumed. On the

other hand, the observation that the inheritance mechanism consistently worsens the results of the

GA with local search improvement is rather a surprise as one may have assumed that inheriting

improved genes should be advantageous. The computational effort of the inheritance mechanism

cannot be the reason as it is neglectable when compared to that of the local search procedure

itself. In fact, we need to examine the behavior of the GA variants more carefully to provide an

explanation, as will be done in the next subsection.

Third, all variants perform best for a medium population size. If the population size is too

large, only a few generations can be computed within the time limit, and the procedure cannot

fully exploit the advantages of genetic optimization. Otherwise, if it is too small, the gene pool

is too small. Observe also that the best population size for the plain GA is larger than that

Project Scheduling with Multiple Modes: A Genetic Algorithm 13

Improvement inheritance 0.20 sec 0.40 sec 0.80 sec 1.60 sec

single-pass no 4.70% 2.69% 1.42% 0.98%

single-pass yes 4.12% 2.45% 1.89% 1.64%

Table 2: Impact of local search improvement — intermediate results, J = 20

for the GA with single pass improvement but without inheritance. This is due to the additional

computational effort needed for the local search improvement. That is, within the same time limit

less individuals can be computed, leading to a smaller favorable population size (and also a smaller

number of generations).

Finally, we remark that we have tested a huge number of GA variants that resulted from

different operators (selection) and parameters (mutation probability, number of crossover points,

population size, number of repetitions as well as number of islands, migration probability). For

the sake of shortness, we cannot list all details of the results here. Hence, we restrict ourselves

to a few comments on the mutation and selection operators. We have mentioned earlier that

a mutation rate of pmutation = 0.05 and the ranking strategy for selection are part of the best

configuration. While the best variant with these settings leads to an average deviation of 1.21%

from the optimal makespan (cf. Table 1), mutation rates of 0.01 and 0.10 result in devitions

of 1.39% and 1.31%, respectively. Employing the proportional selection instead of the ranking

approach leads to a deviation of 1.66%. It should be noted that all experiments conducted for

this paper were repeated many times (and for several different time limits) in order to confirm the

results.

5.3 Population Analysis

Up to this point, we know that it pays to incorporate our single pass local search component for

schedule improvement into the GA. This subsection proceeds with an analysis of the generations

produced by the GA in order to answer a question that has been arising in the previous subsection:

Why is it disadvantageous to inherit the local search results? To obtain comparable results, we fix

the population size to POP = 60 individuals within the GA variants with and without inheritance.

Again, we employ only the set with 20 activities for each project.

Our first experiment takes a closer look at the intermediate results of the artificial evolution.

Table 2 gives the average percentage deviations after 0.2, 0.4, 0.8, and 1.6 CPU seconds for both

GA variants. Shortly after the beginning of the evolution, i.e., after only a few generations have

been computed, the GA variant with inheritance leads to better intermediate results than its

counterpart without. Then, however, the GA without inheritance becomes superior. Hence, the

inheritance mechanism performs better for the smaller computation times, that is, when the number

of generations is relatively small compared to the population size. This result indicates that the

inheritance mechanism should be used together with a larger population size and thus, considering

some fixed time limit, a smaller number of generations. This explains that, according to Table

1, the best POP value for the improvement with inheritance is larger than that for the variant

without. However, Table 1 also shows that, given the best population size for both variants, the

GA without inheritance is superior.

So far, we have seen that inheriting the local search results has some positive effect in the first

few generations. Now we want to find out why there is a negative effect in the long term. We need

some definitions for an analysis of the population.

First, we define a measure for the similarity of two individuals I = (λ, µ) and I ′ = (λ′, µ′). We

start with a definition of the similarity of the related activity lists. Our goal is to check if two

activities have the same relative positions in the activity lists λ and λ′. Since it is sufficient to

consider only those activities that are not precedence related, we define

Project Scheduling with Multiple Modes: A Genetic Algorithm 14

Q = {{i, j} | i, j = 1, . . . , J ; i 6= j; i /∈ Pj ; j /∈ Pi}.

Given two activities i and j that are not precedence related, i.e., {i, j} ∈ Q, we reflect their

relative positions within the activity lists of I and I ′ by

αI,I
′

{i,j} =

{
1, if i is before j in λ and λ′, or if j is before i in λ and λ′,

0, otherwise.

Now we are ready to define the following measure for the similarity of the activity lists of I

and I ′: If there are activities that are not precedence related, i.e., Q 6= ∅, we set

αI,I
′

=
1

|Q|
∑
{i,j}∈Q

αI,I
′

{i,j}.

Otherwise, if Q = ∅, we have a serial network structure which implies that there is only one

precedence feasible activity sequence. In this case, we define αI,I
′

= 1, reflecting that the activity

sequences of individuals I and I ′ are equal.

Note that αI,I
′

always counts different activity lists as different, even if they lead to the same

schedule (cf. again the discussion about the relationship of genotypes and schedules in Subsection

4.3). This is what we intend because we do not want to count the different schedules in the

population but the differences in the gene pool. Consider two genotypes I1 and I2 that have

different activity lists but lead to the same schedule. I1 and I2 could mate with some other

individual I. Let us assume that the same crossover points q1 and q2 are used. The daughter D1

of I1 and I on the one hand and the daughter D2 of I2 and I on the other hand may correspond to

different schedules although their parents correspond to the same schedules. Hence, the differences

in the chromosomes are important when analyzing the evolution, and this is taken into account by

the measure αI,I
′
.

The next definition reflects whether an activity j is assigned the same mode by the mode

assignments µ and µ′ of two individuals I and I ′:

βI,I
′

j =

{
1, if µI(j) = µI

′
(j),

0, otherwise.

This enables us to define the following measure for the similarity of the mode assignments of I

and I ′:

βI,I
′

=
1

J

J∑
j=1

βI,I
′

j .

Combining the above definitions, we obtain a measure σI,I
′

for the similarity of individuals I

and I ′ in which both the activity lists and the mode assignments are considered:

σI,I
′

=
αI,I

′
+ βI,I

′

2
.

Clearly, the higher σI,I
′
, the more identical information is contained in the genotypes of indi-

viduals I and I ′. Observe that we have σI,I
′ ∈ [0, 1]. Especially, we have σI,I

′
= 0 if I and I ′ do

not have any genetic information in common, and σI,I
′

= 1 if they are identical, that is, if we have

I = I ′.

Now we use this similarity measure for analyzing the different generations produced by our

GA. More precisely, we want to partition each generation into sets of similar individuals. In order

to obtain these partitions, we have implemented a cluster analysis algorithm.1 Given a generation

with POP individuals, we first compute the similarity value for each pair of individuals. Then the

1For a general introduction into cluster analysis the reader is referred to, e.g., Backhaus et al. [1].

Project Scheduling with Multiple Modes: A Genetic Algorithm 15

Improvement inheritance 1 5 10 15 20 25 30 35 40 45 50

single-pass no 60 38 32 25 17 14 10 9 8 8 7

single-pass yes 60 31 20 12 9 7 5 4 3 2 2

Table 3: Average number of clusters with respect to generation number

cluster analysis algorithm starts with the trivial partition in which each individual forms a cluster,

that is, we have POP clusters. After that we unite clusters as follows: Consider two clusters C

and C ′. C and C ′ are united if we have σI,I
′ ≥ 0.8 for all individuals I ∈ C and I ′ ∈ C ′. This is

repeated until there are no clusters left that can be united with respect to this similarity criterion.

Each resulting cluster contains highly similar individuals.

We have analyzed the populations generated by the GAs with and without inheritance of the

single pass local search results. Table 3 lists the average number of clusters that have been obtained

by both variants for every fifth generation. As the first generation is randomly determined, there

are no similarities of more than 0.8, inducing 60 clusters with one individual each. With an

increasing number of generations, the number of clusters in a generation decreases, that is, more

similar individuals occur in the population. Clearly, this is due to the crossover and selection

operators which tend to copy “fit” and remove “unfit” information. Table 3, however, shows that

the inheritance mechanism accelerates the reduction of clusters: While the GA without inheritance

leads to 25 different clusters after 15 generations, the GA with inheritance results in only 12 clusters

at the same time.

These results explain why including the inheritance mechanism into the GA deteriorates the

quality of the solutions in a long term evolution: The basic strategy of any GA is to gather

information about promising regions of the search space. Each of our clusters can be viewed

as such a promising region. At the same time, however, information that is not considered as

promising is removed. Clearly, this leads to a loss of genetic variety. If the number of clusters

decreases too fast—in other words, if too much information is lost too fast—the GA gets stuck in

some promising regions of the search space. As each cluster contains similar information, the GA

is likely to fail to construct individuals from previously unsearched regions of the (usually huge)

search space if only few clusters are left. Consequently, many regions remain unexplored, and

better solutions may be left undetected. On the other hand, the focus on a few promising clusters

is advantageous if the evolution is restricted to a small number of generations, see again Table 2.

However, a short term evolution does not fully exploit the power of genetic optimization.

Basically, one encounters the following difficulty when designing a GA: An evolution proceeding

too fast leads to a loss of genetic variety and is thus disadvantageous. On the other hand, an

evolution proceeding too slowly may be unable to identify promising regions of the search space.

Therefore, the variants and parameters have to be chosen carefully.

The results obtained here are in line with the findings of Whitley et al. [30]. They state that a

Larmarckian evolution (like that induced by our inheritance approach) leads to a faster search with

a tendency to converge to a local optimum whereas a genetic algorithm enhanced by individual

learning, but without inheritance of the results may by more likely to converge to a global optimum.

5.4 Comparison with other Metaheuristics

In this subsection we summarize the results obtained from a comparison of our GA with other

metaheuristics for solving the MRCPSP that have recently been proposed in the literature. We

use the best variant of our GA, that is, with single-pass improvement, but without inheritance of

the local search results.

Kolisch and Drexl [17] suggested a local search procedure which successively constructs a neigh-

bor mode assigment based on slack calculations of the current schedule and, after fixing the modes

accordingly, computes a schedule for the resulting single-mode RCPSP using a single pass priority

Project Scheduling with Multiple Modes: A Genetic Algorithm 16

Heuristic average dev. feasible optimal

new GA 0.10% 100.0% 98.1%

Kolisch, Drexl [17] 0.50% 100.0% 91.8%

Özdamar [23] 0.86% 100.0% 88.1%

Table 4: New GA vs. two other heuristics — 6000 schedules, J = 10

rule method. After a given number of moves, the procedure tries to improve the schedule for the

best current mode assignment by the adaptive sampling approach of Kolisch and Drexl [16]. The

experimental investigation of Kolisch and Drexl [17] shows that their approach outperforms the

algorithms of Boctor [2] and of Drexl and Grünewald [6].

Özdamar [23] developed a GA based on an encoding which is made up by a sequence of priority

rules and a mode assignment. As decoding procedure, the so-called parallel schedule generation

scheme is used (cf. also Kolisch and Hartmann [18]). For each individual, two schedules are

computed by forward-backward scheduling.

Bouleimen and Lecocq [5] proposed a simulated annealing procedure which makes use of a

precedence feasible activity list and a mode assignment. It contains two stages which are repeated

alternately. In the first stage, a move alters the mode assignment. In the second stage, the resulting

mode assigment is (temporarily) fixed, and the activity list is modified by moves that shift activities

within the list.

Let us begin with the heuristics of Kolisch and Drexl [17] and Özdamar [23]. As a basis for

the comparison of our GA with these two heuristics, we use the result reported by Özdamar [23]

obtained from computing 3000 individuals (which corresponds to 6000 schedules due to a forward

and a backward scheduling pass for each individual) for each instance of the ProGen multi-mode

set with 10 non-dummy activities in a project. We recompiled the original PASCAL code of Kolisch

and Drexl [17] and limited the number of schedules to 6000 for each ProGen instance with J = 10.

Finally, we tested our GA with 3000 individuals (which corresponds to 6000 schedules due to the

single pass improvement for each individual) for each project instance of the same set without

imposing a time limit. We may assume that the effort to compute one schedule is similar in the

three procedures. Hence, this should yield a fair comparison (in fact, as our GA does not require

to compute eligible activities or priority values, it is probably the fastest). We obtained the results

that are displayed in Table 4. They show that our GA clearly outperforms the other two heuristics.

Note especially that the two genetic algorithms show a different behavior. This indicates that the

problem representation and also other components such as the local search extensions have a much

higher influence on the performance than the metaheuristic strategy alone.

Now we turn to the simulated annealing procedure of Bouleimen and Lecocq [5]. Table 5

summarizes the results of their heuristic as reported by the authors and compares them to our

GA. It can be seen that the new GA outperforms the simulated annealing heuristic. Also note

that the computation time of our GA is lower (see the computers and time limits given in Table

5).

5.5 Comparison with Truncated Branch-and-Bound

In what follows, we compare the new GA with a truncated version of the branch-and-bound (B&B)

procedure of Sprecher and Drexl [27]. We do so for two reasons: First, the authors have suggested

to employ their exact algorithm as a heuristic by imposing a time limit. Second, as shown by

Hartmann and Drexl [11], their approach is the currently most efficient exact method for solving

the MRCPSP.

For the tests, we have used the reimplementation of the branch-and-bound approach that was

done for the study of Hartmann and Drexl [11]. It should be noted that this is an improved version

of the original method of Sprecher and Drexl [27] because it includes two new bounding rules. For

Project Scheduling with Multiple Modes: A Genetic Algorithm 17

Heuristic J average dev. max. dev. optimal

new GAa 10 0.06% 6.3% 98.7%

12 0.14% 9.1% 97.3%

14 0.44% 10.3% 89.8%

16 0.59% 10.5% 87.8%

18 0.99% 13.3% 78.3%

20 1.21% 14.2% 73.3%

Bouleimen, Lecocq [5]b 10 0.21% 7.8% 96.3%

12 0.19% 6.3% 91.2%

14 0.92% 10.6% 82.6%

16 1.43% 12.9% 72.8%

18 1.85% 11.7% 69.4%

20 2.10% 13.2% 66.9%

a Pentium 133 MHz, time limit: 1 sec
b Pentium 100 MHz, time limit: 5 times the instance size (in seconds)

Table 5: New GA vs. simulated annealing

activity selection, we employed the rule recommended by Sprecher [26], that is, the next eligible

activity to be selected for branching is the one with the lowest number. The modes are selected

with respect to non-decreasing processing time. A time limit is added as basis for the comparison

with the GA. We have used the ProGen instance sets with up to 20 activities in a project.

Table 6 summarizes the results obtained from both algorithms for a time limit of one second. For

each project size, it lists the average and the maximal deviation from the optimum, the percentage

of instances for which an feasible solution was found, and the percentage of instances for which

an optimal solution was found. While the truncated exact procedure solves all instances with 10

activities to optimality within one second, its average deviation for the instances with 20 activities

is more than nine times higher than that obtained by the GA. In contrast to the GA which results

in moderate maximal deviations of at most 15%, the maximal deviation of the truncated branch-

and-bound algorithm is almost 80% for J = 20. While our GA finds a feasible solution for every

instance with J ≤ 20, the truncated exact procedure fails to do so for instances with more than 12

activities. It is important to note that the results for the set with J = 30 reflect deviations from

a lower bound, and that for many instances of that set a feasible solution does not exist.

Table 7 gives the results for four different time limits between 1 and 125 seconds and the projects

with 20 activities. We observe that both approaches benefit from increasing the computation time.

The GA is clearly superior for all time limits and reaches near-optimal solutions within 125 seconds.

The truncated branch-and-bound approach still fails to find a feasible schedule for some projects

within this time.

Finally, we examine the impact of the renewable resource strength RSρ on the solution quality

of the GA and the truncated branch-and-bound procedure. The resource strength is a parameter

of the instance generator ProGen mentioned above. It ranges between 0 and 1. Project instances

with a low resource strength are characterized by scarce capacities of the renewable resources. A

resource strength of 1 implies that the renewable resource capacities are high enough not to impose

restrictions on the schedules. Table 8 shows that a low renewable resource strength makes a project

instance harder to solve for both heuristics. The average percentage deviations from the optimal

makespan increase with decreasing resource strength for both procedures tested here, given the

instance set with J = 20 and a time limit of one second. For all RSρ values, the deviation of the

GA is approximately nine times lower than that of the truncated branch-and-bound algorithm.

Information on the impact of other project parameters on the behavior of heuristics can be found

in Hartmann and Kolisch [12].

Project Scheduling with Multiple Modes: A Genetic Algorithm 18

Heuristic J average dev.a max. dev.a feasible optimalb

new GA 10 0.06% 6.3% 100.0% 98.7%

12 0.14% 9.1% 100.0% 97.3%

14 0.44% 10.3% 100.0% 89.8%

16 0.59% 10.5% 100.0% 87.8%

18 0.99% 13.3% 100.0% 78.3%

20 1.21% 14.2% 100.0% 73.3%

30 16.93% 151.9% 86.3% n/a

truncated B&B 10 0.00% 0.0% 100.0% 100.0%

12 0.12% 17.9% 100.0% 98.2%

14 1.46% 33.3% 99.6% 85.7%

16 3.81% 52.4% 99.5% 69.5%

18 7.48% 77.4% 98.0% 57.4%

20 11.51% 78.6% 96.4% 47.3%

30 57.22% 244.0% 55.8% n/a

a deviation from optimum for J ≤ 20 and from lower bound for J = 30
b not all optimal solutions for J = 30 are currently known

Table 6: New GA vs. truncated B&B with respect to project size — 1 sec

Heuristic CPU-sec average dev. max. dev. feasible optimal

new GA 1 1.21% 14.2% 100.0% 73.3%

5 0.49% 10.7% 100.0% 87.9%

25 0.22% 10.5% 100.0% 94.4%

125 0.11% 7.1% 100.0% 96.8%

truncated B&B 1 11.51% 78.6% 96.4% 47.3%

5 6.24% 89.4% 98.6% 63.7%

25 2.88% 53.6% 99.5% 76.4%

125 1.04% 34.2% 99.6% 87.9%

Table 7: New GA vs. truncated B&B with respect to time limit — J = 20

It is interesting to note that the truncated branch-and-bound procedure dominates on the sets

of small instances, that is, those instances that are very easy with respect to the project size (see

again Table 6), but not on those that are easy with respect to the resource strength. This indicates

that if the number of activities increases, the GA becomes superior, independently from the level

of the resource strength. This observation already holds for the rather small instances in the test

set, where the GA performs better for projects with more than 12 activities.

6 Conclusions

We have presented a genetic algorithm (GA) for solving project scheduling problems with multiple

modes. Our computational experiments show that this procedure outperformed several other

heuristics that have been proposed for the MRCPSP in the literature. Several components of

the GA contributed to the good results. First and probably most important, the problem specific

representation is crucial for the success of the GA. The comparison with another GA approach from

the literature suggests that using different representations within the same metaheuristic strategy

Project Scheduling with Multiple Modes: A Genetic Algorithm 19

Heuristic RSρ = 0.25 RSρ = 0.50 RSρ = 0.75 RSρ = 1.00

new GA 2.02% 1.26% 1.06% 0.69%

truncated B&B 18.27% 10.61% 9.93% 6.55%

Table 8: New GA vs. truncated B&B with respect to resource strength — average deviation from

optimal makespan, 1 sec, J = 20

may lead to different results. Second, extending the genetic algorithm framework by local search

concepts has been beneficial. We used two local search methods. One was designed to deal with

the feasibility problem of the MRCPSP, while the other was used to improve the schedules found

by the GA. It is important to note that these components which have proved to be successful are

all based on problem-specific knowledge. On the other hand, using further general GA concepts

such as the island model did not improve the results.

The results of this study are in line with the findings of Hartmann and Kolisch [12] who pro-

vided an experimental evaluation of several state-of-the-art heuristics for the single mode RCPSP.

They found out that the best algorithms were metaheuristics (namely the simulated annealing

approach of Bouleimen and Lecocq [5] and the GA of Hartmann [10]). Moreover, their results

suggest that using a metaheuristic strategy alone does not lead to good results. Our observa-

tions for the multi-mode case lead to the same conclusions: Metaheuristic strategies are promising

approaches to project scheduling problems, and as much problem-specific knowledge as possible

should be incorporated into the heuristic. Future research could include the development of further

metaheuristic algorithms for the MRCPSP and their comparison with the GA approach presented

here.

Acknowledgements. I am indebted to Rainer Kolisch and Andreas Drexl, Christian-Albrechts-

Universität zu Kiel, for making the source code of their heuristic available. I would also like to

thank Joanna Józefowska, Poznań University of Technology, for helpful comments on an earlier

version of this paper. Finally, I am grateful to the anonymous referees whose remarks helped to

improve the paper.

References
[1] K. Backhaus, B. Erichson, W. Plinke, and

R. Weiber. Multivariate Analysemethoden: Eine
anwendungsorientierte Einführung. Springer,
Berlin, Germany, 1996.

[2] F. F. Boctor. Heuristics for scheduling projects with
resource restrictions and several resource-duration
modes. International Journal of Production Re-
search, 31:2547–2558, 1993.

[3] F. F. Boctor. An adaptation of the simulated an-
nealing algorithm for solving resource-constrained
project scheduling problems. International Journal
of Production Research, 34:2335–2351, 1996.

[4] F. F. Boctor. A new and efficient heuristic for
scheduling projects with resource restrictions and
multiple execution modes. European Journal of Op-
erational Research, 90:349–361, 1996.

[5] K. Bouleimen and H. Lecocq. A new efficient
simulated annealing algorithm for the resource-
constrained project scheduling problem. In G. Bar-
barosoglu, S. Karabati, L. Özdamar, and G. Ulusoy,

editors, Proceedings of the sixth international work-
shop on project management and scheduling, pages
19–22. Bogazici University Printing Office, Turkey,
1998.

[6] A. Drexl and J. Grünewald. Nonpreemptive multi-
mode resource-constrained project scheduling. IIE
Transactions, 25:74–81, 1993.

[7] A. E. Eiben, E. H. L. Aarts, and K. M. van Hee.
Global convergence of genetic algorithms: A markov
chain analysis. Lecture Notes in Computer Science,
496:4–12, 1990.

[8] S. E. Elmaghraby. Activity networks: Project plan-
ning and control by network models. Wiley, New
York, 1977.

[9] D. E. Goldberg. Genetic algorithms in search, op-
timization, and machine learning. Addison-Wesley,
Reading, Massachusetts, 1989.

[10] S. Hartmann. A competitive genetic algorithm for
resource-constrained project scheduling. Naval Re-
search Logistics, 45:733–750, 1998.

Project Scheduling with Multiple Modes: A Genetic Algorithm 20

[11] S. Hartmann and A. Drexl. Project scheduling with
multiple modes: A comparison of exact algorithms.
Networks, 32:283–297, 1998.

[12] S. Hartmann and R. Kolisch. Experimental evalua-
tion of state-of-the-art heuristics for the resource-
constrained project scheduling problem. Euro-
pean Journal of Operational Research, 127:394–407,
2000.

[13] H. J. Holland. Adaptation in natural and artificial
systems. University of Michigan Press, Ann Arbor,
1975.

[14] U. Kohlmorgen, H. Schmeck, and K. Haase. Experi-
ences with fine-grained parallel genetic algorithms.
Annals of Operations Research, 90:203–319, 1999.

[15] R. Kolisch. Serial and parallel resource-constrained
project scheduling methods revisited: Theory and
computation. European Journal of Operational Re-
search, 90:320–333, 1996.

[16] R. Kolisch and A. Drexl. Adaptive search for solving
hard project scheduling problems. Naval Research
Logistics, 43:23–40, 1996.

[17] R. Kolisch and A. Drexl. Local search for nonpre-
emptive multi-mode resource-constrained project
scheduling. IIE Transactions, 29:987–999, 1997.

[18] R. Kolisch and S. Hartmann. Heuristic algorithms
for solving the resource-constrained project schedul-
ing problem: Classification and computational anal-
ysis. In J. Weglarz, editor, Project scheduling:
Recent models, algorithms and applications, pages
147–178. Kluwer Academic Publishers, 1999.

[19] R. Kolisch and A. Sprecher. PSPLIB – a project
scheduling problem library. European Journal of
Operational Research, 96:205–216, 1996.

[20] R. Kolisch, A. Sprecher, and A. Drexl. Characteri-
zation and generation of a general class of resource-
constrained project scheduling problems. Manage-
ment Science, 41:1693–1703, 1995.

[21] Z. Michalewicz. Heuristic methods for evolution-
ary computation techniques. Journal of Heuristics,
1:177–206, 1995.

[22] M. Mori and C. C. Tseng. A genetic algorithm
for the multi-mode resource-constrained project
scheduling problem. European Journal of Opera-
tional Research, 100:134–141, 1997.

[23] L. Özdamar. A genetic algorithm approach to a
general category project scheduling problem. IEEE
Transactions on Systems, Man, and Cybernetics,
Part C: Applications and Reviews, 29:44–59, 1999.

[24] R. Slowinski. Two approaches to problems of re-
source allocation among project activities: A com-
parative study. Journal of the Operational Research
Society, 31:711–723, 1980.

[25] R. Slowinski, B. Soniewicki, and J. Weglarz. DSS
for multiobjective project scheduling subject to
multiple-category resource constraints. European
Journal of Operational Research, 79:220–229, 1994.

[26] A. Sprecher. Resource-constrained project schedul-
ing: Exact methods for the multi-mode case. Num-
ber 409 in Lecture Notes in Economics and Mathe-
matical Systems. Springer, Berlin, Germany, 1994.

[27] A. Sprecher and A. Drexl. Multi-mode resource-
constrained project scheduling by a simple, general
and powerful sequencing algorithm. European Jour-
nal of Operational Research, 107:431–450, 1998.

[28] A. Sprecher, S. Hartmann, and A. Drexl. An ex-
act algorithm for project scheduling with multiple
modes. OR Spektrum, 19:195–203, 1997.

[29] F. B. Talbot. Resource-constrained project schedul-
ing with time-resource tradeoffs: The nonpreemp-
tive case. Management Science, 28:1197–1210,
1982.

[30] D. Whitley, V. S. Gordon, and K. Mathias. Lamar-
ckian evolution, the Baldwin effect and function op-
timization. In Proceedings of the parallel problem
solving from nature, pages 6–15. Springer, Berlin,
Germany, 1994.

	Introduction
	Problem Description: The MRCPSP
	A Genetic Algorithm
	Basic Scheme
	Preprocessing
	Definition of Individuals
	Fitness Computation
	Initial Population
	Crossover
	Mutation
	Selection
	Extensions of the General Scheme

	Improving Schedules by Local Search
	Single Pass Improvement
	Multi Pass Improvement
	Inheritance Beyond the Genetic Metaphor

	Computational Results
	Experimental Design
	Configuration of the Algorithm
	Population Analysis
	Comparison with other Metaheuristics
	Comparison with Truncated Branch-and-Bound

	Conclusions

