
Published in Naval Research Logistics 45:733-750 (1998). c© Wiley & Sons,

doi:10.1002/(SICI)1520-6750(199810)45:7<733::AID-NAV5>3.0.CO;2-C

A Competitive Genetic Algorithm for

Resource-Constrained Project Scheduling

Sönke Hartmann∗

Christian-Albrechts-Universität zu Kiel, Lehrstuhl für Produktion und Logistik, D-24098

Kiel, Germany. E-mail: hartmann@bwl.uni-kiel.de

∗supported by the Studienstiftung des deutschen Volkes

Abstract. In this paper we consider the resource-constrained project scheduling problem

(RCPSP) with makespan minimization as objective. We propose a new genetic algorithm ap-

proach to solve this problem. Subsequently, we compare it to two genetic algorithm concepts

from the literature. While our approach makes use of a permutation based genetic encoding

that contains problem-specific knowledge, the other two procedures employ a priority value

based and a priority rule based representation, respectively. Then we present the results of

our thorough computational study for which standard sets of project instances have been

used. The outcome reveals that our procedure is the most promising genetic algorithm to

solve the RCPSP. Finally, we show that our genetic algorithm yields better results than

several heuristic procedures presented in the literature.

Keywords. Project Management and Scheduling, Resource-Constraints, Genetic Algo-

rithms, Computational Results.

1 Introduction

Within the classical resource-constrained project scheduling problem (RCPSP), the activities of a

project have to be scheduled such that the makespan of the project is minimized. This problem

arises within project management software as well as within systems for production planning and

scheduling. The currently most powerful exact procedures have been presented by Brucker et

al. [3], Demeulemeester and Herroelen [6, 7], Mingozzi et al. [24], and Sprecher [32]. However, they

are unable to find optimal schedules for highly resource-constrained projects with 60 activities

or more. Hence, in practice heuristic algorithms to generate near-optimal schedules for larger

projects are of special interest. Recently, an evaluation study (see Kolisch and Hempel [18] and

Kolisch [14]) showed that commercial software packages for project management generate schedules

with an average deviation of 4.3% to 9.8% from the optimal solution for projects with up to 30

activities. These rather disappointing results indicate the need for (fast) heuristics to obtain better

near-optimal schedules which should be implemented in software packages.

Recently proposed heuristic algorithms for the RCPSP include the following: Bell and Han

[2] present a two-phase algorithm based on the concept of disjunctive arcs. Sampson and Weiss

[31] introduce a local search approach in which a schedule is encoded by a shift vector. Özdamar

and Ulusoy [26] propose the so-called local constraint based analysis (LCBA), which is extended

to an iterative algorithm in Özdamar and Ulusoy [28]. Kolisch [15] develops three new priority

rules for the parallel scheduling scheme and tests them in a single-pass environment. Kolisch [16]

https://doi.org/10.1002/(SICI)1520-6750(199810)45:7<733::AID-NAV5>3.0.CO;2-C

A Competitive Genetic Algorithm for Resource-Constrained Project Scheduling 2

compares some good priority rules within both the serial and the parallel scheduling scheme and

reports experiences with sampling procedures. Kolisch and Drexl [17] introduce a so-called adaptive

search procedure which applies a scheduling scheme and priority rules after analyzing the project

instance at hand. Baar et al. [1] develop two tabu search approaches. Lee and Kim [21] compare

a genetic algorithm (GA), a simulated annealing heuristic, and a tabu search method. Cho and

Kim [4] improve the simulated annealing procedure of Lee and Kim [21]. Leon and Ramamoorthy

[22] suggest a GA and two local search procedures which are based on the so-called problem space

based representation. Kohlmorgen et al. [13] summarize their experiences with an implementation

of a GA for the RCPSP on parallel processors.

The purpose of this paper is to introduce a new GA approach for solving the RCPSP and to

compare it to two existing GA concepts for this problem class. The three procedures are based

on different genetic encodings and encoding-specific genetic operators. We proceed as follows:

Section 2 provides a description of the RCPSP. Section 3 introduces the new GA which makes use

of a permutation based representation. Sections 4 and 5 summarize two GA approaches from the

literature which employ a priority value and a priority rule based encoding, respectively. Section

6 gives the results of our in-depth computational experiments. Finally, Section 7 states some

conclusions.

2 Problem Description

We consider a project which consists of J activities (jobs) labeled j = 1, . . . , J . Due to technological

requirements, there are precedence relations between some of the jobs. These precedence relations

are given by sets of immediate predecessors Pj indicating that an activity j may not be started

before all of its predecessors are completed. Analogously, Sj is the set of the immediate successors

of activity j. The transitive closure of the precedence relations is given by sets of (not necessarily

immediate) successors Sj . The precedence relations can be represented by an activity-on-node

network which is assumed to be acyclic. We consider additional activities j = 0 representing the

single source and j = J + 1 representing the single sink activity of the network.

With the exception of the (dummy) source and (dummy) sink activity, each activity requires

certain amounts of (renewable) resources to be performed. The set of resources is referred to as K.

For each resource k ∈ K the per-period-availability is constant and given by Rk. The processing

time (duration) of an activity j is denoted as pj , its request for resource k is given by rjk. Once

started, an activity may not be interrupted. W.l.o.g., we assume that the dummy source and the

dummy sink activity have a duration of zero periods and no request for any resource.

The parameters are assumed to be nonnegative and integer valued. The objective is to deter-

mine a schedule with minimal makespan such that both the precedence and resource constraints

are fulfilled. Mathematical programming formulations of the RCPSP have been given by e.g. De-

meulemeester and Herroelen [6, 7], Mingozzi et al. [24], and Sprecher [32].

3 Permutation based Genetic Algorithm

3.1 Basic Scheme

Introduced by Holland [12], genetic algorithms (GAs) serve as a heuristic meta strategy to solve

hard optimization problems. For an introduction into GAs, we refer to Goldberg [9]. In this section

we propose a new GA approach for the RCPSP.

The GA starts by computing an initial population, i.e. the first generation. We assume that the

initial population contains POP individuals where POP is an even integer. After computing the

fitness values of the individuals, the population is randomly partitioned into pairs of individuals.

To each resulting pair of (parent) individuals, we apply the crossover operator to produce two new

(children) individuals. Subsequently, we apply the mutation operator to the genotypes of the newly

produced children. After determining the fitness of each child individual, we add the children to

A Competitive Genetic Algorithm for Resource-Constrained Project Scheduling 3

0 7

2

1

4

3

6

5

K = {1}; R1 = 4

j

pj/rj1

0/0 0/0

3/2

4/3

2/4

2/4

1/3

4/2

�
�
���

@
@
@@R -

-

-

-

�
�
���

@
@
@@R

Figure 1: Project instance

1 2 3 4 5 6 7 8 9 10 11 12 13 t

1

2

3

4

R1

-

6

2
4

6

1

3
5

Figure 2: Example schedule

the current population, leading to a population size of 2 · POP . Finally, applying the selection

operator to reduce the population to its former size, we obtain the next generation. The algorithm

stops if a prespecified number of generations which is denoted as GEN or a given time limit is

reached. Clearly, at most POP ·GEN different individuals (and related schedules) are calculated.

3.2 Individuals and fitness

In the first GA variant to be examined, an individual I is given by an activity sequence

I = (jI1 , . . . , j
I
J).

This job sequence is assumed to be a precedence feasible permutation of the set of activities, that

is, we have {jI1 , . . . , jIJ} = {1, . . . , J} and PjIi
⊆ {0, jI1 , . . . , jIi−1} for i = 1, . . . , J .

Each genotype is related to a uniquely determined schedule (phenotype) which is computed

using the following serial scheduling scheme: First, the dummy source activity is started at time

0. Then we schedule the activities in the order that is prescribed by the sequence (jI1 , . . . , j
I
J).

Thereby, each activity is assigned the earliest feasible start time. Note that the result is an active

schedule, cf. Kolisch [16]. That is, no activity can be left shifted without violating the constraints

(for a formal definition of active schedules cf. Sprecher et al. [33]). The fitness of an individual I

is given by the makespan of the related schedule. Consider the project instance shown in Figure

1. Applying the serial scheduling procedure described above to example individual

I = (2, 4, 6, 1, 3, 5)

leads to the schedule given in Figure 2. The fitness of this individual is 13.

The initial population is computed as follows: Starting with the empty job sequence, we obtain

a precedence feasible job sequence by repeatedly applying the following step: The next activity in

the job sequence is randomly taken from the set of those currently unselected activities all non-

dummy predecessors of which have already been selected for the job sequence. In addition to this

A Competitive Genetic Algorithm for Resource-Constrained Project Scheduling 4

random algorithm, we have tested another variant which determines the initial population with a

sampling procedure as described by Kolisch [16]. More precisely, we employ a good priority rule,

in our case the latest finish time rule (LFT), to derive probabilities which are used to select the

next activity for the job sequence.

Notice that, while each individual is related to a unique schedule, a schedule can be related to

more than one individual. In other words, there is some redundancy in the search space as dis-

tinct elements of the search space (i.e. genotypes) may be related to the same schedule. Consider

again the project instance of Figure 1 and the above example individual I. Obviously, exchang-

ing activities 1 and 6 in this job sequence, we obtain a different precedence feasible genotype,

i. e. (2, 4, 1, 6, 3, 5). However, both genotypes are related to the same schedule, i.e. the schedule

displayed in Figure 2.

3.3 Crossover

We consider three different crossover variants for the permutation based encoding. They are similar

to the general crossover technique described by Reeves [30] for permutation based genotypes, with

the difference that our encoding takes precedence relations into account.

The first crossover operator is called one-point crossover. We consider two individuals se-

lected for crossover, a mother M and a father F . Then we draw a random integer q with 1 ≤ q < J .

Now two new individuals, a daughter D and a son S, are produced from the parents. We first

consider D which is defined as follows: In the job sequence of D, the positions i = 1, . . . , q are

taken from the mother, that is,

jDi := jMi .

The job sequence of positions i = q + 1, . . . , J in D is taken from the father. However, the jobs

that have already been taken from the mother may not be considered again. We obtain

jDi := jFk where k is the lowest index such that jFk /∈ {jD1 , . . . , jDi−1}.

As a result, the relative positions in the parents’ job sequences are preserved. This way, the

parents contribute to the child’s fitness. For illustration, we consider again Figure 1 and, given

q = 3, the individuals

M = (1, 3, 2, 5, 4, 6), F = (2, 4, 6, 1, 3, 5), D = (1, 3, 2, 4, 6, 5).

While the above definition obviously ensures that each activity appears exactly once in the

resulting job sequence, the following theorem shows that also the precedence assumption is fulfilled.

Theorem 1 If applied to precedence feasible parent individuals, the one-point crossover operator

for the permutation based genetic encoding results in a precedence feasible offspring genotype.

Proof. Let the genotypes of the parents M and F fulfill the precedence assumption. We assume

that the child individual D produced by the crossover operator is not precedence feasible. That

is, there are two activities jDi and jDk with 1 ≤ i < k ≤ J and jDk ∈ PjDi
. Three cases can be

distinguished:

Case 1: We have i, k ≤ q. Then activity jDi is before activity jDk in the job sequence of M , a

contradiction to the precedence feasibility of M .

Case 2: We have i, k > q. As the relative positions are maintained by the crossover operator,

activity jDi is before activity jDk in the job sequence of F , contradicting the precedence feasibility

of F .

Case 3: We have i ≤ q and k > q. Then activity jDi is before activity jDk in the job sequence

of M , again a contradiction to the precedence feasibility of M . �

The son S of the individuals M and F is computed similarly. However, the positions 1, . . . , q

of the son’s job sequence are taken from the father and the remaining positions are determined by

the mother. Obviously, Theorem 1 holds for both offspring individuals D and S.

A Competitive Genetic Algorithm for Resource-Constrained Project Scheduling 5

The second crossover operator is an extension of the one-point variant, called two-point

crossover. Here, we draw two random integers q1 and q2 with 1 ≤ q1 < q2 ≤ J . Now the

daughter individual D is determined by taking the job sequence of the positions i = 1, . . . , q1 from

the mother, that is,

jDi := jMi .

The positions i = q1 + 1, . . . , q2 are derived from the father:

jDi := jFk where k is the lowest index such that jFk /∈ {jD1 , . . . , jDi−1}.

The remaining positions i = q2 + 1, . . . , J are again taken from the mother, that is,

jDi := jMk where k is the lowest index such that jMk /∈ {jD1 , . . . , jDi−1}.

Considering again Figure 1 and the above example parents M and F , we obtain for q1 = 1 and

q2 = 3 daughter

D = (1, 2, 4, 3, 5, 6).

The son individual is computed analogously, taking the first and third part from the father and

the second one from the mother. Obviously, Theorem 1 can easily be extended to the two-point

crossover. Observe also that fixing q2 = J leads to the one-point variant which therefore is a special

case of the two-point crossover.

The third crossover type is called uniform crossover. Here, the daughter D is determined as

follows: We draw a sequence of random numbers pi ∈ {0, 1}, i = 1, . . . , J . Then we successively

fill positions i = 1, . . . , J in D. If we have pi = 1, we take that activity from the mother’s job

sequence which has the lowest index among the currently unselected activities, that is,

jDi := jMk where k is the lowest index such that jMk /∈ {jD1 , . . . , jDi−1}.

Otherwise, if pi = 0, the activity is analogously derived from the father’s job sequence:

jDi := jFk where k is the lowest index such that jFk /∈ {jD1 , . . . , jDi−1}.

For the above example individuals M and F and random number sequence 0, 1, 1, 0, 1, 1, we

obtain daughter

D = (2, 1, 3, 4, 5, 6).

The son S is computed using an analogous procedure which takes the i-th job from the father if

p1 = 1 and from the mother otherwise. Note that the uniform crossover generalizes the two-point

variant: Fixing pi = 1 for i ∈ {1, . . . , q1, q2 + 1, . . . , J} and pi = 0 for i ∈ {q1 + 1, . . . , q2} leads to

the definition of the daughter in the two-point crossover. With arguments similar to those used in

the proof of Theorem 1, one can show that also the uniform crossover produces precedence feasible

offspring.

3.4 Mutation

Given a permutation based individual I, the mutation operator modifies the related job sequence

as follows: For all positions i = 1, . . . , J−1, activities jIi and jIi+1 are exchanged with a probability

of pmutation, if the result is a job sequence which fulfills the precedence assumption.

The mutation operator may create job sequences (i.e. gene combinations) that could not have

been produced by the crossover operator. However, it should be noted that performing a mutation

on an individual does not necessarily change the related schedule. This is due to the redundancy

in the genetic representation: For example, interchanging two activities in the job sequence which

have the same start time changes the individual, but not the related schedule.

A Competitive Genetic Algorithm for Resource-Constrained Project Scheduling 6

3.5 Selection

We consider four alternative selection operators which follow a survival-of-the-fittest strategy as

similarly described by e.g. Michalewicz [23]. The first one is a simple ranking method: We keep

the POP best individuals and remove the remaining ones from the population (ties are broken

arbitrarily).

The second variant, the proportional selection, can be viewed as a randomized version of

the previously described ranking technique. Let f(I) be the fitness of an individual I, and let P
denote the current population, that is, a list containing the individuals. Note that we use a list of

individuals instead of a set because we explicitly allow two (or more) distinct individuals with the

same genotype in a population. We restore the original population size by successively removing

individuals from the population until POP individuals are left, using the following probability:

Denoting with fbest = min{f(I) | I ∈ P} the best fitness in the current population, the probability

to die for an individual I is given by

pdeath(I) =
(f(I)− fbest + 1)2∑

I′∈P (f(I ′)− fbest + 1)2
.

Next, we consider two versions of the tournament technique. In the 2-tournament selection,

two different randomly chosen individuals I1 and I2 compete for (temporary) survival. If individual

I1 is not better than individual I2, i.e. f(I1) ≥ f(I2), then it dies and is removed from the

population (again, ties are broken arbitrarily). This process is repeated until POP individuals are

left. Recall that a lower fitness value implies a better quality of the individual.

Finally, the 3-tournament selection extends the previously described method by randomly

selecting three individuals I1, I2, and I3. If we have f(I1) ≥ f(I2) and f(I1) ≥ f(I3), individual

I1 is removed from the population. Again, this step is repeated until POP individuals are left.

4 Priority Value based Genetic Algorithm

This section is devoted to a GA which makes use of a priority value based encoding as similarly used

by Lee and Kim [21] within their GA for the RCPSP. We employ the priority value representation

into the basic GA scheme that was used for the permutation based GA. This allows us to obtain

comparable results when evaluating the GA approaches. We also make use of the selection operator

variants here that have been defined for the permutation based GA as they are not encoding specific.

In the following, the priority value based representation and the related crossover and mutation

operators are discussed.

4.1 Individuals and fitness

In this GA approach, an individual I is represented by a sequence of priority values

I = (pvI1 , . . . , pv
I
J).

For each priority value of activity j = 1, . . . , J , we have pvIj ∈ [0, 1]. This encoding equals the one

employed by Lee and Kim [21]. In contrast to their approach which employs a parallel scheduling

scheme to derive the schedule related to an individual, however, we employ a serial scheme similar

to that used for the permutation based encoding. We do so because it has been shown by Kolisch

[16] that a serial scheme yields better results when a large number of schedules is computed for

one project instance. This is due to the fact that using the parallel scheme, one might exclude all

optimal solutions from the search space while the search space of the serial scheme always contains

an optimal schedule.

Hence, given an individual I, the related schedule is computed as follows: After starting the

dummy source activity at time 0, we determine the set EJ of the eligible activities, that is, those

activities the predecessors of which are already scheduled. Then we schedule the eligible activity

A Competitive Genetic Algorithm for Resource-Constrained Project Scheduling 7

j with the highest priority value pvIj = max {pvIi | i ∈ EJ} as early as possible such that neither

the precedence nor the resource constraints are violated. Repeatedly scheduling an unscheduled

activity, we obtain a feasible active schedule. Again, the fitness of an individual is defined as the

makespan of the related schedule. Consider again the instance of Figure 1. Example individual

I = (0.58, 0.64, 0.31, 0.87, 0.09, 0.34)

is related to the schedule of Figure 2.

Each individual I of the initial population is determined by randomly drawing a priority value

pvIj ∈ [0, 1] with a uniform distribution for each activity j = 1, . . . , J .

As was the case for the permutation based encoding, there is some redundancy in the search

space also for the priority value based representation. We consider again the above example indi-

vidual I. Clearly, setting for example pvI2 = 0.93 instead of 0.64, we obtain a different individual.

However, both individuals are related to the same schedule, namely the one of Figure 2.

4.2 Crossover

This encoding allows us to employ standard crossover operators. Again, we consider two indi-

viduals selected for crossover, a mother M and a father F , from which two offspring individuals

are computed. In the following, we only define the daughter D. As for the permutation based

representation, the son S is computed analogously to the daughter’s definition.

For the one-point crossover, we draw a random integer q with 1 ≤ q < J . The first q

positions of daughter individual D are taken from the mother while the remaining ones are defined

by the father, that is, for each i = 1, . . . , J we have

pvDi =

{
pvMi , if i ∈ {1, . . . , q}
pvFi , if i ∈ {q + 1, . . . , J}.

Using again Figure 1 and q = 3, this definition is illustrated by

M = (0.58, 0.64, 0.31, 0.87, 0.09, 0.34),

F = (0.12, 0.43, 0.99, 0.65, 0.19, 0.22),

D = (0.58, 0.64, 0.31, 0.65, 0.19, 0.22).

Similarly to the permutation based encoding, we have considered the two-point crossover

in addition to the one-point variant defined above. We draw two random integers q1 and q2 with

1 ≤ q1 < q2 ≤ J and obtain for each i = 1, . . . , J

pvDi =

pvMi , if i ∈ {1, . . . , q1}
pvFi , if i ∈ {q1 + 1, . . . , q2}
pvMi , if i ∈ {q2 + 1, . . . , J}.

Finally, for the uniform crossover, we draw a sequence of random numbers pi ∈ {0, 1},
i = 1, . . . , J . Then we set for each i = 1, . . . , J

pvDi =

{
pvMi , if pi = 1

pvFi , otherwise.

4.3 Mutation

The mutation for the priority value based encoding is defined as follows: Given an individual I,

we modify the related priority value sequence as follows: For all positions i = 1, . . . , J , a new

priority value pvIi ∈ [0, 1] is drawn with a probability of pmutation. Clearly, the result is always

a feasible priority value sequence. Obviously, the mutation operator may create priority values

(i.e. genes) that did not occur in the population before. Again, however, performing a mutation

on an individual does not necessarily change the related schedule due to the redundancy discussed

above.

A Competitive Genetic Algorithm for Resource-Constrained Project Scheduling 8

5 Priority Rule based Genetic Algorithm

In this section, we describe a GA based on a priority rule representation. This representation type

has been developed by Dorndorf and Pesch [8] for the job shop scheduling problem. Özdamar [25]

employed it for the multi-mode extension of the RCPSP. Like the priority value based one, also

this GA employs the basic scheme and the selection operator variants that have been used for the

permutation based GA. Next, the priority rule encoding and the related crossover and mutation

operators are provided.

5.1 Individuals and fitness

In this GA variant, an individual I is given by a sequence of priority rules

I = (prI1 , . . . , pr
I
J)

where we have for each position i = 1, . . . , J

prIi ∈ {LFT, LST, MTS, MSLK, WRUP, GRPW}.

Each of these six priority rules has been suggested in the literature and shown to produce good

schedules for the RCPSP, we refer to the study recently performed by Kolisch [16]. Table 1 contains

a brief mathematical definition for each priority rule. Here, LFTj denotes the latest finish time

of activity j. It can be determined using traditional backward recursion from an upper bound on

the project’s makespan. Finally, with fj we denote the earliest precedence and resource feasible

finish time of activity j in the current partial schedule. Within the WRUP rule which has been

developed by Ulusoy and Özdamar [34], we have employed the weights that performed best in their

study.

Whereas Özdamar [25] employs a parallel scheme to transform an individual into a schedule,

we use a serial scheme for the same reason as the one given in the previous section. We proceed

as follows: First, we start the dummy source activity at time 0. Then, we compute the set of the

eligible activities and use priority rule prI1 to select the eligible activity with the highest priority.

The selected activity is started at the earliest precedence and resource feasible time. After updating

the eligible set, the second activity to be scheduled is selected using priority rule prI2 . Repeatedly

scheduling an unscheduled activity, we obtain a feasible active schedule. Thereby, the i-th decision

which activity to schedule next is made using the i-th priority rule in the sequence. In other words,

the i-th activity to be scheduled is selected using rule prIi . The fitness of an individual is again

given by the makespan of the related schedule. Considering the project instance of Figure 1, the

schedule related to the example individual

I = (LST, GRPW, MTS, LST, MSLK, LFT)

is again the one of Figure 2.

Priority rule formula

LFT latest finish time min LFTj

LST latest start time min LFTj − pj
MTS most total successors max |Sj |
MSLK minimum slack min LFTj − fj
WRUP weighted resource utilization and precedence max 0.7 |Sj |+ 0.3

∑
k∈K rjk/Rk

GRPW greatest rank positional weight max pj +
∑

i∈Sj
pi

Table 1: Good priority rules

A Competitive Genetic Algorithm for Resource-Constrained Project Scheduling 9

Each individual I of the initial generation is determined by randomly selecting one of the six

priority rules for prIi , i = 1, . . . , J .

Like the two previously described genetic representations, also the priority rule based encoding

contains some redundancy. Consider again example individual I given above. Replacing the first

priority rule in the sequence (LFT) with e.g. the GRPW rule, we obtain a different genotype which

is, however, also related to the schedule of Figure 2.

While the search spaces for the other two encodings always contain an optimal solution, this is

not the case for the priority rule based representation. For the sake of shortness, we do not give a

detailed counterexample, mentioning only that in some cases none of the employed priority rules

may select an activity that must be scheduled next in order to obtain an optimal schedule from the

current partial schedule. This drawback could be overcome by adding a priority rule which allows

any eligible activity to be selected, namely the random rule (RAND). However, we did not employ

the RAND priority rule because it seems to be incompatible with the GA paradigm: Obviously,

selecting an activity with the RAND rule may contribute to the fitness if, by chance, this activity

continues the current partial schedule in an advantageous way. However, the RAND rule itself

does not contain specific information that is worth to be inherited.

5.2 Crossover

We can employ standard crossover operators similar to those used for the priority value encoding.

The definitions of the one-point, two-point, and uniform crossover for the priority rule represen-

tation are obtained from replacing pvIi by prIi in the respective definitions for the priority value

encoding.

5.3 Mutation

For the priority rule based encoding, the mutation operator is defined as follows: For each position

i = 1, . . . , J of an individual I, a new priority rule

prIi ∈ {LFT,LST,MTS,MSLK,WRUP,GRPW}

is randomly drawn with a probability of pmutation. Again, due to the redundancy described above,

performing a mutation on a genotype does not necessarily change the related schedule.

6 Computational Results

6.1 Experimental Design

In this section we present the results of the computational studies concerning the genetic algorithms

introduced in the previous sections. The experiments have been performed on a Pentium-based

IBM-compatible personal computer with 133 MHz clock-pulse and 32 MB RAM. For our study,

we have implemented four procedures: the three GAs described in the previous sections and, as

a benchmark, the priority rule based sampling approach of Kolisch [16]. These procedures have

been coded in ANSI C, compiled with the GNU C compiler, and tested under Linux.

Two different standard sets of benchmark instances from the literature have been used. For

configuration and analysis of the GA approaches (in Subsections 6.2, 6.3, and 6.4), we used a set of

test problems constructed by the project generator ProGen developed by Kolisch et al. [20]. These

instances are available in the project scheduling problem library PSPLIB from the University of

Kiel. For detailed information the reader is referred to Kolisch and Sprecher [19]. In our study,

we have used the ProGen problem instances with 30 and 60 non-dummy activities. We have

4 renewable resources. For each problem size, a set consists of 480 instances which have been

systematically generated by varying three parameters: network complexity, resource factor, and

resource strength. The network complexity reflects the average number of immediate successors

A Competitive Genetic Algorithm for Resource-Constrained Project Scheduling 10

of an activity. The resource factor is a measure of the average number of resources requested per

job. The resource strength describes the scarceness of the resource capacities. These parameters

are known to have a big impact on the hardness of a project instance, cf. Kolisch et al. [20].

The set with 30 non-dummy activities currently is the hardest standard set of RCPSP-instances

for which all optimal solutions are known, cf. Demeulemeester and Herroelen [7]. In what follows

we report the average percentage deviation from the optimal makespan. However, for some of the

instances with 60 activities, only heuristic solutions are known. In these cases, we give the average

percentage deviation from the best lower and upper bounds as reported in the library PSPLIB

at the time this research was performed. The lower bounds were computed by Baar et al. [1]

and Heilmann and Schwindt [11]. The upper bounds were obtained by Kolisch and Drexl [17],

Kohlmorgen et al. [13], and Baar et al. [1].

Finally, for comparing our GA approach with other procedures presented in the literature

(in Subsection 6.5), we use the set of project instances assembled by Patterson [29]. We do

so because the Patterson instance set has been used to evaluate heuristics in several studies, see

[2, 4, 21, 22, 27, 28, 31]. The Patterson set contains 110 instances with up to 51 activities and up to 3

resources. For all of these test problems, the optimal solutions are known, see e.g. Demeulemeester

and Herroelen [6].

6.2 Configuration of the Genetic Algorithms

Crucial for the success of a GA is an appropriate choice of good genetic operators and adequate

parameter settings, usually on the basis of computational experiments. We report the outcome of

our study to determine the best GA configuration only for the suggested permutation based GA

approach of Section 3 and for the ProGen instance set with 30 non-dummy activities, because the

results for the other GAs and the other instance sets are similar. For each instance, 1,000 schedules

were computed.

Table 2 reports the average and the maximal deviation from the optimum, the percentage of

instances for which an optimal solution was found, and the computation time in seconds for different

combinations of alternative genetic operators. We have tested all possible GA configurations

that arise from combining three mutation probability levels, the three crossover variants, and

the four selection variants. A mutation probability of 0.05, the two-point crossover strategy, and

the ranking method for selection perform best (for the sake of shortness, Table 2 contains only

those configurations that vary this best one in only one point). The two-point crossover operator

appears to be capable of inheriting building blocks that contributed to the parents’ fitness (for

much larger projects, even more than two cuts may probably be advisable). In contrast, the

uniform crossover operator (which yields good results for problems with a different structure such

as e.g. the multidimensional knapsack problem, cf. Chu and Beasley [5]) does not seem to be well

suited for sequencing problems. A randomized selection strategy seems to be advantageous only if

a much larger number of individuals is considered.

Table 3 shows that a population size of 40 and 25 generations is the best parameter relationship

when calculating 1,000 individuals (i.e. schedules). Finally, Table 4 shows that it pays to use a

sampling method instead of a pure random procedure to determine the initial population.

In the further computational studies, the three GAs make use of the best configuration deter-

mined here. That is, they apply a mutation probability of 0.05, a two-point crossover, the ranking

selection, and the relationship of population size and number of generations given above. Recall,

however, that the sampling procedure to determine the initial population is only employed in our

permutation based GA. The other two approaches make use of a pure random procedure.

6.3 Comparison of the Genetic Algorithms

In this subsection, we present the experimental results obtained from the comparison of the pro-

posed GA of Section 3 with the GA approaches described in Sections 4 and 5.

A Competitive Genetic Algorithm for Resource-Constrained Project Scheduling 11

pmutation crossover selection average dev. max. dev. optimal CPU-sec

0.01 two-point ranking 0.64% 9.7% 77.5% 0.54

0.05 two-point ranking 0.54% 7.9% 81.5% 0.54

0.10 two-point ranking 0.56% 8.6% 80.4% 0.55

0.05 one-point ranking 0.65% 9.7% 77.5% 0.54

0.05 two-point ranking 0.54% 7.9% 81.5% 0.54

0.05 uniform ranking 0.66% 8.6% 79.6% 0.76

0.05 two-point ranking 0.54% 7.9% 81.5% 0.54

0.05 two-point proportional 0.62% 7.7% 78.5% 0.60

0.05 two-point 2-tournament 0.63% 9.3% 79.0% 0.54

0.05 two-point 3-tournament 0.59% 7.3% 80.9% 0.54

Table 2: Alternative genetic operators — permutation based GA, 1,000 schedules, J = 30

POP GEN average dev. max. dev. optimal CPU-sec

50 20 0.56% 11.1% 80.8% 0.54

40 25 0.54% 7.9% 81.5% 0.54

20 50 0.79% 9.2% 76.5% 0.54

Table 3: Impact of population size — permutation based GA, 1,000 schedules, J = 30

The first numerical results to be presented are obtained from the ProGen project instance set

with 30 activities where 1,000 individuals (i.e. schedules) are computed for each instance. Table

5 gives the average and the maximal deviation from the optimum, the percentage of instances for

which an optimal solution was found, and the computation time in seconds. The permutation based

encoding yields better results than the priority value based representation while both outperform

the priority rule encoding.

Table 5 also shows that the permutation based GA results in the lowest computation times.

This is because we have to determine eligible activities and apply priority rules only for the first

generation, when computing the schedule related to permutation based individuals. Clearly, when

using a heuristic procedure in practice, it is important to obtain good schedules within a reasonable

amount of CPU time. Therefore we have additionally tested the three GA variants with time limits

instead of fixing the number of schedules to be computed. As a further benchmark, we use a good

sampling procedure known from the literature (cf. Kolisch [16]) which is based on the randomized

LFT priority rule.

Table 6 displays the average deviations from the optimum obtained for the instances with

J = 30 from four different time limits. The permutation based GA performs best for all time

limits while the priority rule based GA yields the worst results. Note especially that the deviation

of the permutation based GA is two times lower than that of the priority rule based GA for a time

limit of 0.5 seconds while it is more than four times lower for 4 seconds. That is, the proposed GA is

Initial population average dev. max. dev. optimal CPU-sec

random sampling (LFT) 0.54% 7.9% 81.5% 0.54

random 0.99% 10.5% 70.8% 0.52

Table 4: Impact of initial population — permutation based GA, 1,000 schedules, J = 30

A Competitive Genetic Algorithm for Resource-Constrained Project Scheduling 12

GA average dev. max. dev. optimal CPU-sec

permutation 0.54% 7.9% 81.5% 0.54

priority value 1.03% 10.8% 70.6% 0.64

priority rule 1.38% 17.7% 70.6% 0.91

Table 5: Comparison of genetic algorithms — 1,000 schedules, J = 30

Algorithm type 0.5 sec 1.0 sec 2.0 sec 4.0 sec

GA permutation 0.71% 0.45% 0.37% 0.24%

GA priority value 1.16% 0.88% 0.69% 0.54%

GA priority rule 1.51% 1.33% 1.21% 1.13%

sampling LFT 1.00% 0.77% 0.66% 0.55%

Table 6: Average deviations w.r.t. time limit — J = 30

not only the best for small time limits, its superiority also further increases when the computation

time is increased.

Next, we have performed the same experiment on the set of instances with 60 activities. As

for some instances optimal solutions are currently unknown, we measure the deviations from the

best known lower and upper bound here. The results can be found in Tables 7 and 8, respectively.

Again, the permutation based GA performs best for all time limits. In contrast to the instances

with J = 30, however, here the priority rule based GA outperforms the priority value GA and

the sampling approach. This observation can be explained as follows: Selecting J = 60 instead

of J = 30 results in a much larger search space. Within the same time limit, only a much

smaller portion of the search space can be examined. Therefore, the strategy to combine several

good priority rules corresponds to examining only potentially promising regions of the search space.

However, the restriction to the regions identified by the priority rules is disadvantageous for smaller

projects and/or higher computation times (or, of course, faster computers).

We remark here that most of the best known upper bounds for the hard instances were computed

by Kohlmorgen et al. [13] with their parallel GA approach. Using a massively parallel computer

with 16k processing units, they had 16,384 individuals per generation, while our GA could not

evaluate more than 4,000 individuals altogether within 4 seconds when applied to the instances

with 60 activities. Thus, it is not surprising that the best known upper bounds are on the average

0.59% better than our results (cf. Table 8). Nevertheless, it should be mentioned that the schedules

for 3 of the 480 instances with 60 activities found by our GA (with a time limit of 4 seconds) were

better than those reported in the library PSPLIB at the time this research was performed.

The results can be summarized as follows: The permutation based GA outperforms the other

two GA approaches. Considering again Subsection 6.2, we observe that the choice of an appropriate

representation is far more important than other configuration decisions such as crossover and

Algorithm type 0.5 sec 1.0 sec 2.0 sec 4.0 sec

GA permutation 5.30% 4.73% 4.37% 4.16%

GA priority value 7.60% 6.60% 6.17% 5.70%

GA priority rule 5.92% 5.50% 5.18% 4.96%

sampling LFT 6.08% 5.77% 5.63% 5.39%

Table 7: Average deviations from best lower bound w.r.t. time limit — J = 60

A Competitive Genetic Algorithm for Resource-Constrained Project Scheduling 13

Algorithm type 0.5 sec 1.0 sec 2.0 sec 4.0 sec

GA permutation 1.42% 1.10% 0.79% 0.59%

GA priority value 3.61% 2.88% 2.24% 1.79%

GA priority rule 2.07% 1.80% 1.52% 1.34%

sampling LFT 2.27% 1.99% 1.82% 1.62%

Table 8: Average deviations from best upper bound w.r.t. time limit — J = 60

Encoding GA random

permutation 0.54% 0.82%

priority value 1.03% 1.69%

priority rule 1.38% 1.41%

Table 9: Impact of genetic operators — 1,000 schedules, J = 30

selection type or mutation rate.

6.4 Impact of Genetic Operators

In what follows, we examine the question whether the three representations are well suited for

application in genetic algorithms. In other words, we want to know if they benefit from the

application of genetic operators. Thus, for each encoding, we compare the related GA which

computes 1,000 schedules by applying the genetic operators on 40 individuals over 25 generations

with what we will call a “random procedure”. For each encoding, this random procedure generates

1,000 schedules independently, that is, without applying the genetic operators. Note that it can

be viewed as a GA with a population size of 1,000 and only one generation (i.e. the initial one).

For the three encodings, the average deviations from the optimal solutions for both the “real”

GAs and the random procedures are listed in Table 9. We observe that the GAs clearly outperform

the corresponding random procedures if the permutation and priority value encodings are consid-

ered. However, for the priority rule encoding, there are only slight differences between randomly

generating 1,000 priority rule sequences (and thus schedules) on the one hand and randomly gen-

erating only 40 and applying the genetic operators over 25 generations on the other hand. Hence

we can deduce that the priority rule encoding does not exploit the potential of the GA paradigm

when applied to solve the RCPSP. In contrast, the other two representations are well suited for

application in a GA.

Recall that the initial population of the permutation based GA is computed using a sampling

method. That is, the random procedure for the permutation encoding listed in Table 9 is in fact

a sampling algorithm. Table 9 shows that it is better to determine only 40 schedules using the

sampling procedure and then apply the genetic operators over 25 generations, than to compute all

1,000 schedules with the sampling method.

6.5 Comparison with other heuristics

Finally, we have compared our permutation based GA to further heuristics suggested in the liter-

ature. The results are shown in Table 10. Recall, the priority value and the priority rule based

GAs can be viewed as modified versions of the GAs proposed by Lee and Kim [21] and Özdamar

[25], respectively. In addition to the priority rule based sampling algorithm of Kolisch [16], we

have considered the simulated annealing (SA) procedures of Cho and Kim [4] and Lee and Kim

[21], the local search approach of Sampson and Weiss [31], and the disjunctive arc based two-phase

A Competitive Genetic Algorithm for Resource-Constrained Project Scheduling 14

Algorithm Reference average dev. optimal CPU-sec

GA (permutation) — 0.00% 100.0% 5.0a

GA (priority value) — 0.25% 88.4% 5.0a

GA (priority rule) — 0.78% 74.6% 5.0a

sampling (LFT) Kolisch [16] 0.05% 96.4% 5.0a

SA Cho, Kim [4] 0.14% 93.6% 18.4b

SA Lee, Kim [21] 0.57% 82.7% 17.0b

local search Sampson, Weiss [31] 1.98% 55.5% 10.2b

two-phase Bell, Han [2] 2.60% 44.5% 28.4c

GA (problem space) Leon, Ramamoorthy [22] 0.74% 75.5% 7.5d

LCBA Özdamar, Ulusoy [28] 1.14% 63.6% 0–25e

amaximal CPU-time on a Pentium 133 MHz
baverage CPU-time on a Pentium 60 MHz
caverage CPU-time on a Macintosh plus
daverage CPU-time on an IBM RS 6000
eCPU-time range on an IBM PC 486

Table 10: Comparison of heuristics — Patterson instance set

procedure of Bell and Han [2] as further benchmarks. The results for the latter four heuristics

are given as reported in [4]. Furthermore, the local constraint based analysis (LCBA) method

of Özdamar and Ulusoy [26] has been included in its iterative variant, see Özdamar and Ulusoy

[28]. The results cited here are taken from the study performed by Özdamar and Ulusoy [27, 28].

Finally, we have considered the results obtained by Leon and Ramamoorthy [22] for their GA.

Their approach is based on the so-called problem space based representation which, similarly to

the priority value representation, encodes a solution using an array of real numbers.

Taking the different computers and computation times into account, we can state that the

permutation based GA is the most promising among the these heuristics for the RCPSP. Observe

that our GA solves all Patterson instances to optimality within a time limit of 5 seconds. Finally,

the results show that the success of a GA mainly depends on the underlying representation.

7 Conclusions

We have proposed a genetic algorithm (GA) for solving the classical resource-constrained project

scheduling problem (RCPSP). The representation is based on a precedence feasible permutation

of the set of the activities. The genotypes are transformed into schedules using a serial scheduling

scheme. Among several alternative genetic operators for the permutation encoding, we chose a

ranking selection strategy, a mutation probability of 0.05, and a two-point crossover operator which

preserves precedence feasibility. The initial population was determined with a randomized priority

rule method. In order to evaluate our approach, we have compared it to two GA concepts from

the literature which make use of a priority value and a priority rule representation, respectively.

As further benchmarks, seven other heuristics known from the literature were considered. Our in-

depth computational study revealed that our GA outperformed the other GAs as well as the other

approaches. This outcome suggests to apply our GA to real-world project scheduling problems. In

fact, we have obtained promising results for a medical research project documented in [10].

A Competitive Genetic Algorithm for Resource-Constrained Project Scheduling 15

References
[1] T. Baar, P. Brucker, and S. Knust. Tabu-search

algorithms and lower bounds for the resource-
constrained project scheduling problem. In S. Voss,
S. Martello, I. Osman, and C. Roucairol, edi-
tors, Meta-heuristics: Advances and trends in lo-
cal search paradigms for optimization, pages 1–8.
Kluwer Academic Publishers, 1998.

[2] C. E. Bell and J. Han. A new heuristic solution
method in resource-constrained project scheduling.
Naval Research Logistics, 38:315–331, 1991.

[3] P. Brucker, S. Knust, A. Schoo, and O. Thiele.
A branch-and-bound algorithm for the resource-
constrained project scheduling problem. Euro-
pean Journal of Operational Research, 107:272–288,
1998.

[4] J. H. Cho and Y. D. Kim. A simulated annealing
algorithm for resource-constrained project schedul-
ing problems. Journal of the Operational Research
Society, 48:736–744, 1997.

[5] P. C. Chu and J. E. Beasley. A genetic algorithm for
the multidimensional knapsack problem. Technical
report, The Management School, Imperial College,
London, England, 1997.

[6] E. L. Demeulemeester and W. S. Herroelen.
A branch-and-bound procedure for the multiple
resource-constrained project scheduling problem.
Management Science, 38:1803–1818, 1992.

[7] E. L. Demeulemeester and W. S. Herroelen. New
benchmark results for the resource-constrained
project scheduling problem. Management Science,
43:1485–1492, 1997.

[8] U. Dorndorf and E. Pesch. Evolution based learning
in a job shop scheduling environment. Computers
& Operations Research, 22:25–40, 1995.

[9] D. E. Goldberg. Genetic algorithms in search, op-
timization, and machine learning. Addison-Wesley,
Reading, Massachusetts, 1989.

[10] S. Hartmann. Scheduling medical research experi-
ments — An application of project scheduling meth-
ods. Manuskripte aus den Instituten für Betrieb-
swirtschaftslehre 452, Universität Kiel, Germany,
1997.

[11] R. Heilmann and C. Schwindt. Lower bounds for
RCPSP/max. Technical Report WIOR-511, Uni-
versität Karlsruhe, Germany, 1997.

[12] H. J. Holland. Adaptation in natural and artificial
systems. University of Michigan Press, Ann Arbor,
1975.

[13] U. Kohlmorgen, H. Schmeck, and K. Haase. Experi-
ences with fine-grained parallel genetic algorithms.
Annals of Operations Research, 90:203–319, 1999.

[14] R. Kolisch. Resource allocation capabilities of com-
mercial project management systems — Resource
management boosts up the German stock exchange.
Interfaces. Forthcoming.

[15] R. Kolisch. Efficient priority rules for the resource-
constrained project scheduling problem. Journal of
Operations Management, 14:179–192, 1996.

[16] R. Kolisch. Serial and parallel resource-constrained
project scheduling methods revisited: Theory and
computation. European Journal of Operational Re-
search, 90:320–333, 1996.

[17] R. Kolisch and A. Drexl. Adaptive search for solving
hard project scheduling problems. Naval Research
Logistics, 43:23–40, 1996.

[18] R. Kolisch and K. Hempel. Experimentelle Eval-
uation der Kapazitätsplanung von Projektmanage-
mentsoftware. Zeitschrift für betriebswirtschaftliche
Forschung, 48:999–1018, 1996.

[19] R. Kolisch and A. Sprecher. PSPLIB – a project
scheduling problem library. European Journal of
Operational Research, 96:205–216, 1996.

[20] R. Kolisch, A. Sprecher, and A. Drexl. Characteri-
zation and generation of a general class of resource-
constrained project scheduling problems. Manage-
ment Science, 41:1693–1703, 1995.

[21] J.-K. Lee and Y.-D. Kim. Search heuristics for
resource-constrained project scheduling. Journal of
the Operational Research Society, 47:678–689, 1996.

[22] V. J. Leon and B. Ramamoorthy. Strength and
adaptability of problem-space based neighborhoods
for resource-constrained scheduling. OR Spektrum,
17:173–182, 1995.

[23] Z. Michalewicz. Heuristic methods for evolution-
ary computation techniques. Journal of Heuristics,
1:177–206, 1995.

[24] A. Mingozzi, V. Maniezzo, S. Ricciardelli, and
L. Bianco. An exact algorithm for the resource-
constrained project scheduling problem based on a
new mathematical formulation. Management Sci-
ence, 44:714–729, 1998.

[25] L. Özdamar. A genetic algorithm approach to a
general category project scheduling problem. IEEE
Transactions on Systems, Man, and Cybernetics,
Part C: Applications and Reviews, 29:44–59, 1999.

[26] L. Özdamar and G. Ulusoy. A local constraint based
analysis approach to project scheduling under gen-
eral resource constraints. European Journal of Op-
erational Research, 79:287–298, 1994.

[27] L. Özdamar and G. Ulusoy. A survey on the
resource-constrained project scheduling problem.
IIE Transactions, 27:574–586, 1995.

[28] L. Özdamar and G. Ulusoy. An iterative local
constraint based analysis for solving the resource-
constrained project scheduling problem. Journal of
Operations Management, 14:193–208, 1996.

[29] J. H. Patterson. A comparison of exact ap-
proaches for solving the multiple constrained re-
source, project scheduling problem. Management
Science, 30:854–867, 1984.

A Competitive Genetic Algorithm for Resource-Constrained Project Scheduling 16

[30] C. R. Reeves. Genetic algorithms and combinatorial
optimization. In V. J. Rayward-Smith, editor, Ap-
plications of modern heuristic methods, pages 111–
125. Alfred Waller Ltd., Henley-on-Thames, 1995.

[31] S. E. Sampson and E. N. Weiss. Local search
techniques for the generalized resource-constrained
project scheduling problem. Naval Research Logis-
tics, 40:665–675, 1993.

[32] A. Sprecher. Solving the RCPSP efficiently at mod-
est memory requirements. Manuskripte aus den

Instituten für Betriebswirtschaftslehre 425, Univer-
sität Kiel, Germany, 1996.

[33] A. Sprecher, R. Kolisch, and A. Drexl. Semi-active,
active and non-delay schedules for the resource-
constrained project scheduling problem. European
Journal of Operational Research, 80:94–102, 1995.

[34] G. Ulusoy and L. Özdamar. Heuristic performance
and network/resource characteristics in resource-
constrained project scheduling. Journal of the Op-
erational Research Society, 40:1145–1152, 1989.

	Introduction
	Problem Description
	Permutation based Genetic Algorithm
	Basic Scheme
	Individuals and fitness
	Crossover
	Mutation
	Selection

	Priority Value based Genetic Algorithm
	Individuals and fitness
	Crossover
	Mutation

	Priority Rule based Genetic Algorithm
	Individuals and fitness
	Crossover
	Mutation

	Computational Results
	Experimental Design
	Configuration of the Genetic Algorithms
	Comparison of the Genetic Algorithms
	Impact of Genetic Operators
	Comparison with other heuristics

	Conclusions

